
Malla Reddy College Engineering (Autonomous)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad ,Telangana-500100

www.mrec.ac.in

Department of Information Technology

II B.TECH I SEM (A.Y.2019-20)

Lecture Notes

On

80507-Operating Systems

4

UNIT I

1.1 OPERATING SYSTEMS OVERVIEW

1.1.1 Operating systems functions

What is an Operating System?

A program that acts as an intermediary between a user of a computer and the computer hardware

Operating system goals:

 Execute user programs and make solving user problems easier
 Make the computer system convenient to use
 Use the computer hardware in an efficient manner

Computer System Structure

Computer system can be divided into four components

 Hardware – provides basic computing resources CPU, memory, I/O devices
 Operating system-Controls and coordinates use of hardware among various applications and users
 Application programs – define the ways in which the system resources are used to solve the

computing problems of the users
-Word processors, compilers, web browsers, database systems,

 video games

 Users
- People, machines, other computers

Four Components of a Computer System

Process Management

5

 A process is a program in execution. It is a unit of work within the system. Program is a passive
entity, process is an active entity.

 Process needs resources to accomplish its task
 CPU, memory, I/O, files
 Initialization data
 Process termination requires reclaim of any reusable resources
 Single-threaded process has one program counter specifying location of next instruction to

execute
 Process executes instructions sequentially, one at a time, until completion
 Multi-threaded process has one program counter per thread
 Typically system has many processes, some user, some operating system running concurrently on

one or more CPUs
 Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

 The operating system is responsible for the following activities in connection with process
management:

 Creating and deleting both user and system processes
 Suspending and resuming processes
 Providing mechanisms for process synchronization
 Providing mechanisms for process communication
 Providing mechanisms for deadlock handling

Memory Management

 All data in memory before and after processing
 All instructions in memory in order to execute
 Memory management determines what is in memory when
 Optimizing CPU utilization and computer response to users
 Memory management activities
 Keeping track of which parts of memory are currently being used and by whom
 Deciding which processes (or parts thereof) and data to move into and out of memory
 Allocating and deal locating memory space as needed

Storage Management

 OS provides uniform, logical view of information storage
 Abstracts physical properties to logical storage unit - file
 Each medium is controlled by device (i.e., disk drive, tape drive)
 Varying properties include access speed, capacity, data-transfer rate, access method (sequential or

random)
 File-System management
 Files usually organized into directories
 Access control on most systems to determine who can access what

OS activities include

 Creating and deleting files and directories
 Primitives to manipulate files and dirs

6

 Mapping files onto secondary storage
 Backup files onto stable (non-volatile) storage media

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or data that must be kept for a
“long” period of time

 Proper management is of central importance
 Entire speed of computer operation hinges on disk subsystem and its algorithms

MASS STORAGE activities

 Free-space management
 Storage allocation
 Disk scheduling
 Some storage need not be fast
 Tertiary storage includes optical storage, magnetic tape
 Still must be managed
 Varies between WORM (write-once, read-many-times) and RW (read-write)

1.1.2 Operating-System Structure

Simple Structure

Many commercial systems do not have well-defined structures. Frequently, such operating systems
started as small, simple, and limited systems and then grew beyond their original scope. MS-DOS is an
example of such a system.

It was written to provide the most functionality in the least space, so it was not divided into modules
carefully. In MS-DOS, the interfaces and levels of functionality are not well separated. For instance,
application programs are able to access the basic I/O routines to write directly to the display and disk
drives. Such freedom leaves MS-DOS vulnerable to errant (or malicious) programs, causing entire system
crashes when user programs fail. Of course, MS-DOS was also limited by the hardware of its era. Another
example of limited structuring is the original UNIX operating system. UNIX is another system that
initially was limited by hardware functionality.

7

It consists of two separable parts: the kernel and the system programs. The kernel is further separated into
a series of interfaces and device drivers, which have been added and expanded over the years as UNIX
has evolved.

Layered Approach

The operating system can then retain much greater control over the computer and over the applications
that make use of that computer. Implementers have more freedom in changing the inner workings of the
system and in creating modular operating systems. Under the top down approach, the overall functionality
and features are determined and are separated into components. Information hiding is also important,
because it leaves programmers free to implement the low-level routines as they see fit, provided that the
external interface of the routine stays unchanged and that the routine itself performs the advertised task.

A system can be made modular in many ways. One method is the layered approach, in which
the operating system is broken up into a number of layers (levels). The bottom layer (layer 0) is the
hardware; the highest (layer N) is the user interface.

An operating-system layer is an implementation of an abstract object made up of data and the operations
that can manipulate those data. A typical operating-system layer—say, layer M—consists of data
structures and a set of routines that can be invoked by higher-level layers. Layer M, in turn, can invoke
operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction and debugging. The
layers are selected so that each uses functions (operations) and services of only lower-level layers. This

8

approach simplifies debugging and system verification. The first layer can be debugged without any
concern for the rest of the system, because, by definition, it uses only the basic hardware (which is
assumed correct) to implement its functions. Once the first layer is debugged, its correct functioning can
be assumed while the second layer is debugged, and so on. If an error is found during the debugging of a
particular layer, the error must be on that layer, because the layers below it are already debugged. Thus,
the design and implementation of the system is simplified.

Each layer is implemented with only those operations provided by lower level layers. A layer
does not need to know how these operations are implemented; it needs to know only what these
operations do. Hence, each layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.

The major difficulty with the layered approach involves appropriately defining the various layers.
The backing-store driver would normally be above the CPU scheduler, because the driver may need to
wait for I/O and the CPU can be rescheduled during this time. A final problem with layered
implementations is that they tend to be less efficient than other types. For instance, when a user program
executes an I/O operation, it executes a system call that is trapped to the I/O layer, which calls the
memory-management layer, which in turn calls the CPU-scheduling layer, which is then passed to the
hardware.

Micro kernels

The kernel became large and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon
University developed an operating system called Mach that modularized the kernel using the
microkernel approach. This method structures the operating system by removing all nonessential
components from the kernel and implementing them as system and user-level programs. The result is a
smaller kernel. microkernels provide minimal process and memory management, in addition to a
communication facility.

The main function of the microkernel is to provide a communication facility between the client
program and the various services that are also running in user space. One benefit of the microkernel
approach is ease of extending the operating system. All new services are added to user space and
consequently do not require modification of the kernel. When the kernel does have to be modified, the
changes tend to be fewer, because the microkernel is a smaller kernel.

The resulting operating system is easier to port from one hardware design to another. The
microkernel also provides more security and reliability, since most services are running as user rather than
kernel processes. If a service fails, the rest of the operating system remains untouched.

Modules

The best current methodology for operating-system design involves using object-oriented programming
techniques to create a modular kernel. Here, the kernel has a set of core components and dynamically
links in additional services either during boot time or during run time. Such a strategy uses dynamically
loadable modules and is common in modern implementations of UNIX, such as Solaris, Linux, and Mac
OS X.

A core kernel with seven types of loadable kernel modules:

1. Scheduling classes
2. File systems
3. Loadable system calls
4. Executable formats
5. STREAMS modules

9

6. Miscellaneous
7. Device and bus drivers

Such a design allows the kernel to provide core services yet also allows certain features to be
implemented dynamically. The overall result resembles a layered system in that each kernel section has
defined, protected interfaces; but it is more flexible than a layered system in that any module can call any
other module. The approach is like the microkernel approach in that the primary module has only core
functions and knowledge of how to load and communicate with other modules; but it is more efficient,
because modules do not need to invoke message passing in order to communicate.
The Apple Macintosh Mac OS X operating system uses a hybrid structure. Mac OS X (also known as
Danvin) structures the operating system using a layered technique where one layer consists of the Mach
microkernel. The top layers include application environments and a set of services providing a graphical
interface to applications. Below these layers is the kernel environment, which consists primarily of the
Mach microkernel and the BSD kernel. Mach provides memory management; support for remote
procedure calls (RPCs) and inter process communication (IPC) facilities, including message passing; and
thread scheduling. The BSD component provides a BSD command line interface, support for networking
and file systems, and an implementation of POSIX APIs, including Pthreads.

1.1.3 Operating-System Operations

1. modern operating systems are interrupt driven. If there are no processes to execute, no I/O
devices to service, and no users to whom to respond, an operating system will sit quietly, waiting
for something to happen. Events are almost always signaled by the occurrence of an interrupt or a
trap

2. A trap (or an exception) is a software-generated interrupt caused
 either by an error or by a specific request from a user program that
 an operating-system service is performed.

3. The interrupt-driven nature of an operating system defines that system's general structure. For
each type of interrupt, separate segments of code in the operating system determine what action
should be taken. An interrupt service routine is provided that is responsible for dealing with the
interrupt.

4. The operating system and the users share the hardware and software resources of the computer
system, we need to make sure that an error in a user program could cause problems only for the
one program that was running. With sharing, many processes could be adversely affected by a
bug in one program. For example, if a process gets stuck in an infinite loop, this loop could
prevent the correct operation of many other processes.

5. Without protection against these sorts of errors, either the computer must execute only one
process at a time or all output must be suspect.

10

Dual-Mode Operation

Dual-mode operation allows OS to protect itself and other system components
User mode and kernel mode
Mode bit provided by hardware Provides ability to distinguish when system is running user code
or kernel code Some instructions designated as privileged, only executable in kernel mode
System call changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources Set interrupt after specific period
 Operating system decrements counter
 When counter zero generate an interrupt
 Set up before scheduling process to regain control or terminate program that exceeds allotted time

Protection and Security

If a computer system has multiple users and allows the concurrent execution of multiple processes, then
access to data must be regulated. For that purpose, mechanisms ensure that files, memory segments, CPU,
and other resources can be operated on by only those processes that have gained proper authorization
from the operating system.

1.1.4 Protection and security

Protection is any mechanism for controlling the access of processes or users to the resources defined by a
computer system. This mechanism must provide means for specification of the controls to be imposed
and means for enforcement.

Protection can improve reliability by detecting latent errors at the interfaces between component
subsystems. Early detection of interface errors can often prevent contamination of a healthy subsystem by
another subsystem that is malfunctioning. An unprotected resource cannot defend against use (or misuse)
by an unauthorized or incompetent user. A protection-oriented system provides a means to distinguish
between authorized and unauthorized usage, A system can have adequate protection but still be prone to
failure and allow inappropriate access.

It is the job of security to defend a system from external and internal attacks. Such attacks spread

across a huge range and include viruses and worms, denial-of service attacks Protection and security
require the system to be able to distinguish among all its users. Most operating systems maintain a list of
user names and associated user identifiers (user IDs).

 User ID then associated with all files, processes of that user to determine access control

11

 Group identifier (group ID) allows set of users to be defined and controls managed, then also
associated with each process, file Privilege escalation allows user to change to effective ID with
more rights

1.1.5 Kernel Data Structures

The operating system must keep a lot of information about the current state of the system. As

things happen within the system these data structures must be changed to reflect the current reality. For

example, a new process might be created when a user logs onto the system. The kernel must create a data

structure representing the new process and link it with the data structures representing all of the other

processes in the system.

Mostly these data structures exist in physical memory and are accessible only by the kernel and

its subsystems. Data structures contain data and pointers, addresses of other data structures, or the

addresses of routines. Taken all together, the data structures used by the Linux kernel can look very

confusing. Every data structure has a purpose and although some are used by several kernel subsystems,

they are more simple than they appear at first sight.

Understanding the Linux kernel hinges on understanding its data structures and the use that the

various functions within the Linux kernel makes of them. This section bases its description of the Linux

kernel on its data structures. It talks about each kernel subsystem in terms of its algorithms, which are its

methods of getting things done, and their usage of the kernel's data structures.

1.1.6 Computing Environments

Traditional Computing

As computing matures, the lines separating many of the traditional computing environments are blurring.
this environment consisted of PCs connected to a network, with servers providing file and print services.
Terminals attached to mainframes were prevalent at many companies as well, with even fewer remote
access and portability options.

The current trend is toward providing more ways to access these computing environments. Web
technologies are stretching the boundaries of traditional computing. Companies establish portals, which
provide web accessibility to their internal servers. Network computers are essentially terminals that
understand web-based computing. Handheld computers can synchronize with PCs to allow very portable
use of company information. Handheld PDAs can also connect to wireless networks to use the
company's web portal.

Batch system processed jobs in bulk, with predetermined input. Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple users shared time on these
systems. Time-sharing systems used a timer and scheduling algorithms to rapidly cycle processes through
the CPU, giving each user a share of the resources.

Client-Server Computing
Designers have shifted away from centralized system architecture. Terminals connected to centralized
systems are now being supplanted by PCs. Correspondingly, user interface functionality once handled
directly by the centralized systems is increasingly being handled by the PCs. As a result, many of today’s
systems acts as server systems to satisfy requests generated by client systems Server systems can be
broadly categorized as compute servers and file servers:

• The compute-server system provides an interface to which a client can send a request to perform an
action (for example, read data); in response, the server executes the action and sends back results to the

12

client. A server running a database that responds to client requests for data is an example of such a
system.

The file-server system provides a file-system interface where clients can create, update, read, and delete
files. An example of such a system is a web server that delivers files to clients running web browsers.

Peer-to-Peer Computing

In this model, clients and servers are not distinguished from one another; instead, all nodes within

the system are considered peers, and each may act as either a client or a server, depending on whether it is
requesting or providing a service. Peer-to-peer systems offer an advantage over traditional client-server
systems. In a client-server system, the server is a bottleneck; but in a peer-to-peer system, services can be
provided by several nodes distributed throughout the network.

To participate in a peer-to-peer system, a node must first join the network of peers. Once a node
has joined the network, it can begin providing services to—and requesting services from—other nodes in
the network.

Determining what services are available is accomplished in one of two general ways:
• When a node joins a network, it registers its service with a centralized lookup service on the

network. Any node desiring a specific service first contacts this centralized lookup service to determine
which node provides the service. The remainder of the communication takes place between the client and
the service provider.

• A peer acting as a client must first discover what node provides a desired service by
broadcasting a request for the service to all other nodes in the network. The node (or nodes) providing
that service responds to the peer making the request. To support this approach, a discovery protocol must
be provided that allows peers to discover services provided by other peers in the network.

Web-Based Computing

The Web has become ubiquitous, leading to more access by a wider variety of devices than was dreamt of
a few years ago. Web computing has increased the emphasis on networking. Devices that were not
previously networked now include wired or wireless access. Devices that were networked now have faster
network connectivity, provided by either improved networking technology, optimized network
implementation code, or both.

The implementation of web-based computing has given rise to new categories of devices, such as
load balancers, which distribute network connections among a pool of similar servers. Operating systems
like Windows 95, which acted as web clients, have evolved into Linux and Windows XP, which can act
as web servers as well as clients. Generally, the Web has increased the complexity of devices, because
their users require them to be web-enabled.

1.1.7 Open-Source Operating Systems

 Operating systems made available in source-code format rather than just binary closed-source
 Counter to the copy protection and Digital Rights Management (DRM) movement

13

 Started by Free Software Foundation (FSF), which has “copy left” GNU Public License (GPL)
 Examples include GNU/Linux, BSD UNIX (including core of Mac OS X), and Sun Solaris

1.2 OPERATING SYSTEM STRUCTURE

 1.2.1 Operating System Services

 One set of operating-system services provides functions that are helpful to the user
 Communications – Processes may exchange information, on the same computer or between

computers over a network.
 Communications may be via shared memory or through message passing (packets moved by the

OS)
 Error detection – OS needs to be constantly aware of possible errors may occur in the CPU and

memory hardware, in I/O devices, in user program
 For each type of error, OS should take the appropriate action to ensure correct and consistent

computing.
 Debugging facilities can greatly enhance the user’s and programmer’s abilities to efficiently use

the system.
 Another set of OS functions exists for ensuring the efficient operation of the system itself via

resource sharing
 Resource allocation - When multiple users or multiple jobs running concurrently, resources

must be allocated to each of them
 Many types of resources - Some (such as CPU cycles, main memory, and file storage) may have

special allocation code, others (such as I/O devices) may have general request and release code
 Accounting - To keep track of which users use how much and what kinds of computer resources
 Protection and security - The owners of information stored in a multiuser or networked

computer system may want to control use of that information, concurrent processes should not
interfere with each other.

 Protection involves ensuring that all access to system resources is controlled.
 Security of the system from outsiders requires user authentication, extends to defending external

I/O devices from invalid access attempts.
 If a system is to be protected and secure, precautions must be instituted throughout it. A chain is

only as strong as its weakest link.
1.2.2 User and Operating System Interface - CLI

 Command Line Interface (CLI) or command interpreter allows direct command entry Sometimes
implemented in kernel, sometimes by systems program

o Sometimes multiple flavors implemented – shells

o Primarily fetches a command from user and executes it

 Sometimes commands built-in, sometimes just names of programs If the latter, adding new
features doesn’t require shell modification

User Operating System Interface - GUI

 User-friendly desktop metaphor interface
 Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc
 Various mouse buttons over objects in the interface cause various actions (provide information,

options, execute function, open directory (known as a folder)

14

 Invented at Xerox PARC
 Many systems now include both CLI and GUI interfaces
 Microsoft Windows is GUI with CLI “command” shell
 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and shells available
 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Bourne Shell Command Interpreter

The Mac OS X GUI

1.2.3 System Calls

 Programming interface to the services provided by the OS
 Typically written in a high-level language (C or C++)
 Mostly accessed by programs via a high-level Application Program Interface (API) rather than

direct system call usenThree most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java
API for the Java virtual machine (JVM)

15

 Why use APIs rather than system calls?(Note that the system-call names used throughout this text
are generic)

Example of System Calls

System Call Implementation

 Typically, a number associated with each system call
 System-call interface maintains a table indexed according to these numbers
 The system call interface invokes intended system call in OS kernel and returns status of the

system call and any return values
 The caller need know nothing about how the system call is implemented
 Just needs to obey API and understand what OS will do as a result call
 Most details of OS interface hidden from programmer by API Managed by run-time support

library (set of functions built into libraries included with compiler)

API – System Call – OS Relationship

16

System Call Parameter Passing

 Often, more information is required than simply identity of desired system call
 Exact type and amount of information vary according to OS and call
 Three general methods used to pass parameters to the OS
 Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers
 Parameters stored in a block, or table, in memory, and address of block passed as a parameter in a

register

This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and popped off the stack by the
operating system

 Block and stack methods do not limit the number or length of parameters being passed

Parameter Passing via Table

17

1.2.4 Types of System Calls

 Process control
 File management
 Device management
 Information maintenance
 Communications
 Protection

Process Control

A running program needs to be able to halt its execution either normally (end) or abnormally (abort). If a
system call is made to terminate the currently running program abnormally, or if the program runs into a
problem and causes an error trap, a dump of memory is sometimes taken and an error message generated.
The dump is written to disk and may be examined by a debugger—a system program designed to aid the
programmer in finding and correcting bugs-—to determine the cause of the problem. Under either normal
or abnormal circumstances, the operating system must transfer control to the invoking command
interpreter. The command interpreter then reads the next command. In an interactive system, the
command interpreter simply continues with the next command; it is assumed that the user will issue an
appropriate
command to respond to any error.

File Management

We first need to be able to create and delete files. Either system call requires the name of the file
and perhaps some of the file's attributes. Once the file is created, we need to open it and to use it. We
may also read, write, or reposition (rewinding or skipping to the end of the file, for example). Finally, we
need to close the file, indicating that we are no longer using it. We may need these same sets of operations
for directories if we have a directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various attributes and perhaps to reset
them if necessary. File attributes include the file name, a file type, protection codes, accounting
information, and so on.

At least two system calls, get file attribute and set file attribute, are required for this function.
Some operating systems provide many more calls, such as calls for file move and copy.

Device Management

A process may need several resources to execute—main memory, disk drives, access to files, and
so on. If the resources are available, they can be granted, and control can be returned to the user process.
Otherwise, the process will have to wait until sufficient resources are available. The various resources
controlled by the operating system can be thought of as devices. Some of these devices are physical
devices (for example, tapes), while others can be thought of as abstract or virtual devices (for example,
files). If there are multiple users of the system, the system may require us to first request the device, to
ensure exclusive use of it. After we are finished with the device, we release it. These functions are similar
to the open and

18

close system calls for files.

Information Maintenance

Many system calls exist simply for the purpose of transferring information between the user
program and the operating system. For example, most systems have a system call to return the current t I
m e and date . Other system calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory or disk space, and so on.

In addition, the operating system keeps information about all its processes, and system calls are
used to access this information. Generally, calls are also used to reset the process information
(get process attributes and set process attributes) .

Communication

There are two common models of inter process communication: the message passing model and
the shared-memory model. In the message-passing model, the communicating processes exchange
messages with one another to transfer information. Messages can be exchanged between the processes
either directly or indirectly through a common mailbox. Before communication can take place, a
connection must be opened. The name of the other communicator must be known, be it another process
on the same system or a process on another computer connected by a communications network. Each
computer in a network has a host name by which it is commonly known. A host also has a network
identifier, such as an IP address. Similarly, each process has a process name, and this name is translated
into an identifier by which the operating system can refer to the process. The get host id and get processid
system calls do this translation. The identifiers are then passed to the general purpose open and close calls
provided by the file system or to specific open connection and close connection system calls, depending
on the system's model of communication.

In the shared-memory model, processes use shared memory creates and shared memory attaches
system calls to create and gain access to regions of memory owned by other processes. Recall that,
normally, the operating system tries to prevent one process from accessing another process's memory.
Shared memory requires that two or more processes agree to remove this restriction.

They can then exchange information by reading and writing data in the shared areas. The form of
the data and the location are determined by the processes and are not under the operating system's control.
The processes are also responsible for ensuring that they are not writing to the same location
simultaneously.

1.2.5 System Programs

At the lowest level is hardware. Next are the operating system, then the system programs, and finally the
application programs. System programs provide a convenient environment for program development and
execution. Some of them are simply user interfaces to system calls; others are considerably more
complex.
They can be divided into these categories:
• File management. These programs create, delete, copy, rename, print, dump, list, and generally
manipulate files and directories.
• Status information. Some programs simply ask the system for the date, time, amount of available
memory or disk space, number of users, or similar status information. Others are more complex,
providing detailed

19

performance, logging, and debugging information. Typically, these programs format and print the output
to the terminal or other output devices or files or display it in a window of the GUI. Some systems also
support a registry, which is used to store and retrieve configuration information.
• File modification. Several text editors may be available to create and modify the content of files stored
on disk or other storage devices. There may also be special commands to search contents of files or
perform transformations of the text.
• Programming-language support. Compilers, assemblers, debuggers and interpreters for common
programming languages (such as C, C++, Java, Visual Basic, and PERL) are often provided to the user
with the operating system.
• Program loading and execution. Once a program is assembled or compiled, it must be loaded into
memory to be executed. The system may provide absolute loaders, relocatable loaders, linkage editors,
and overlay loaders. Debugging systems for either higher-level languages or machine language are
needed as well.
• Communications. These programs provide the mechanism for creating virtual connections among
processes, users, and computer systems. They allow users to send messages to one another's screens, to
browse web pages, to send electronic-mail messages, to log in remotely, or to transfer files from one
machine to another.

In addition to systems programs, most In addition to systems programs, most operating systems
are supplied with programs that are useful in solving common problems or performing common
operations. Such programs include web browsers, word processors and text formatters, spreadsheets,
database systems, compilers, plotting and statistical-analysis packages, and games. These programs are
known as system utilities or application programs.

1.2.6 Operating-System Structure

 Refer above pages

1.2.7 Operating-System Debugging

 Debugging is finding and fixing errors, or bugs
 OS generate log files containing error information
 Failure of an application can generate core dump file capturing memory of the process
 Operating system failure can generate crash dump file containing kernel memory
 Beyond crashes, performance tuning can optimize system performance
 Kernighan’s Law: “Debugging is twice as hard as writing the code in the rst place. Therefore, if

you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”
 DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on production systems
 Probes fire when code is executed, capturing state data and sending it to consumers of those

probes

1.2.8 System Boot

The procedure of starting a computer by loading the kernel is known as booting the system. On most
computer systems, a small piece of code known as the bootstrap program or bootstrap loader locates
the kernel, loads it into main memory, and starts its execution. Some computer systems, such as PCs, use
a two-step process in which a simple bootstrap loader fetches a more complex boot program from disk,
which in turn loads the kernel.

When a CPU receives a reset event—for instance, when it is powered up or rebooted—the
instruction register is loaded with a predefined memory location, and execution starts there. At that
location is the initial bootstrap program. This program is in the form of read-only memory (ROM),
because the RAM is in an unknown state at system startup. ROM is convenient because it needs no
initialization and cannot be infected by a computer virus.

20

The bootstrap program can perform a variety of tasks. Usually, one task is to run diagnostics to
determine the state of the machine. If the diagnostics pass, the program can continue with the booting
steps. It can also initialize all aspects of the system, from CPU registers to device controllers and the
contents of main memory. Sooner or later, it starts the operating system.

Some systems—such as cellular phones, PDAs, and game consoles—store the entire operating
system in ROM. Storing the operating system in ROM is suitable for small operating systems, simple
supporting hardware, and rugged operation. A problem with this approach is that changing the bootstrap
code requires changing the ROM hardware chips. Some systems resolve this problem by using erasable
programmable read-only memory (EPROM), which is read only except when explicitly given a
command to become writable. All forms of ROM are also known as firmware, since their characteristics
fall somewhere between those of hardware and those of software. A problem with firmware in general is
that executing code there is slower than executing code in RAM.

Some systems store the operating system in firmware and copy it to RAM for fast execution. A
final issue with firmware is that it is relatively expensive, so usually only small amounts are available.

For large operating systems (including most general-purpose operating systems like Windows,
Mac OS X, and UNIX) or for systems that change frequently, the bootstrap loader are stored in firmware,
and the operating system is on disk. In this case, the bootstrap runs diagnostics and has a bit of code that
can read a single block at a fixed location (say block zero) from disk into memory and execute the code
from that boot block. The program stored in the boot block may be sophisticated enough to load the
entire operating system into memory and begin its execution. More typically, it is simple code (as it fits in
a single disk block) and only knows the address on disk and length of the remainder of the bootstrap
program. All of the disk-bound bootstrap, and the operating system itself, can be easily changed by
writing new versions to disk.

1.3 PROCESSES

1.3.1 Process concepts

Process : A process is a program in execution. A process is more than the program code, which is

sometimes known as the text section. It also includes the current activity, as represented by the value of

the program counter and the contents of the processor's registers. A process generally also includes the

process stack, which contains temporary data (such as function parameters, return addresses, and local

variables), and a data section, which contains global variables. A process may also include a heap, which

is memory that is dynamically allocated during process run time.

Structure of a process

21

We emphasize that a program by itself is not a process; a program is a passive entity, such as a file
containing a list of instructions stored on disk (often called an executable file), whereas a process is an
active entity, with a program counter specifying the next instruction to execute and a set of associated
resources. A program becomes a process when an executable file is loaded into memory.

Two common techniques for loading executable files are double-clicking an icon representing the
executable file and entering the name of the executable file on the command line (as in prog. exe or a.
out.)

Process State

As a process executes, it changes state. The state of a process is defined in part by the current activity of
that process. Each process may be in one of the following states:
• New. The process is being created.
• Running. Instructions are being executed.
• Waiting. The process is waiting for some event to occur (such as an I/O
completion or reception of a signal).
• Ready. The process is waiting to be assigned to a processor.
• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states that they represent are
fotind on all systems, however. Certain operating systems also more finely delineate process states. It is
important to realize that only one process can be running on any processor at any instant.

Process Control Block

22

Each process is represented in the operating system by a process control block (PCB)—also called a
task control block.

Process state. The state may be new, ready, running, and waiting, halted, and so on.

Program counter-The counter indicates the address of the next instruction to be executed for this
process.
• CPU registers- The registers vary in number and type, depending on the computer architecture. They
include accumulators, index registers, stack pointers, and general-purpose registers, plus any condition-
code information.

CPU-scheduling information- This information includes a process priority, pointers to scheduling
queues, and any other scheduling parameters.

Memory-management information- This information may include such information as the value of the
base and limit registers, the page tables, or the segment tables, depending on the memory system used by
the operating system

Accounting information-This information includes the amount of CPU and real time used, time limits,
account members, job or process numbers, and so on.

I/O status information-This information includes the list of I/O devices allocated to the process, a list of
open files, and so on.

1.3.2 Process Scheduling

The process scheduler selects an available process (possibly from a set of several available processes)
for program execution on the CPU.

As processes enter the system, they are put into a job queue, which consists of all processes in the
system. The processes that are residing in main memory and are ready and waiting to execute are kept on
a list called the ready queue.
This queue is generally stored as a linked list. A ready-queue header contains pointers to the first and final
PCBs in the list. Each PCB includes a pointer field that points to the next PCB in the ready queue.

23

Each rectangular box represents a queue. Two types of queues are present: the ready queue and a set of
device queues. The circles represent the resources that serve the queues, and the arrows indicate the flow
of processes in the system.

A new process is initially put in the ready queue. It waits there till it is selected for execution, or
is dispatched. Once the process is allocated the CPU and is executing, one of several events could occur:
• The process could issue an I/O request and then be placed in an I/O queue.
• The process could create a new sub process and wait for the sub process’s termination.
• The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back in the
ready queue.

Schedulers

A process migrates among the various scheduling queues throughout its lifetime. The operating system
must select, for scheduling purposes, processes from these queues in some fashion.

24

The selection process is carried out by the appropriate scheduler. The long-term scheduler, or job

scheduler, selects processes from this pool and loads them into memory for execution. The short-term

scheduler, or CPU scheduler, selects from among the processes that are ready to execute and allocates

the CPU to one of them.

1.3.3 Operations on Processes

Process Creation

A process may create several new processes, via a create-process system call, during the course of
execution. The creating process is called a parent process, and the new processes are called the children
of that process. Each of these new processes may in turn create other processes, forming a tree of
processes.

Most operating systems identify processes according to a unique process identifier (or pid),
which is typically an integer number. These processes are responsible for managing memory and file
systems. The sched process also creates the init process, which serves as the root parent process for all
user processes.

When a process creates a new process, two possibilities exist in terms of execution:
1. The parent continues to execute concurrently with its children.
2. The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new process:
1. The child process is a duplicate of the parent process (it has the same program and data as the parent).
2. The child process has a new program loaded into it.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main()
{
pid-t pid;
/* fork a child process */
pid = fork();
if (pid < 0) {/* error occurred */
fprintf(stderr, "Fork Failed");
exit (-1) ;
}
else if (pid == 0} {/* child process */
execlpf"/bin/Is","Is",NULL);
}
else {/* parent process */
/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");
exit (0) ;

}

}

25

In UNIX, as we've seen, each process is identified by its process identifier, which is a unique integer. A

new process is created by the fork() system call. The new process consists of a copy of the address space

of the original process. This mechanism allows the parent process to communicate easily with its child

process. Both processes (the parent and the child) continue execution at the instruction after the f ork(),

with one difference: The return code for the fork() is zero for the new (child) process, whereas the

(nonzero) process identifier of the child is returned to the parent. the exec() system call is used after a

fork() system call by one of the two processes to replace the process's memory space with a new program.

The exec () system call loads a binary file into memory (destroying the memory image of the program

containing the execO system call) and starts its execution.

Process Termination

A process terminates when it finishes executing its final statement and asks the operating system to delete
it by using the exit () system call. At that point, the process may return a status value (typically an integer)
to its parent process (via the wait() system call). All the resources of the process—including physical and
virtual memory, open files, and I/O buffers—are deal located by the operating system.

Termination can occur in other circumstances as well. A process can cause the termination of
another process via an appropriate system call (for example, TerminateProcessO in Win32). Usually, such
a system call can be invoked only by the parent of the process that is to be terminated.

A parent may terminate the execution of one of its children for a variety of reasons, such as these:
• The child has exceeded its usage of some of the resources that it has been allocated.
• The task assigned to the child is no longer required.
• The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates.

Consider that, in UNIX, we can terminate a process by using the exit() system call; its parent
process may wait for the termination of a child process by using the wait() system call. The wait () system
call returns the process identifier of a terminated child so that the parent can tell which of its possibly
many children has terminated.

If the parent terminates, however, all its children have assigned as their new parent the init
process.

1.3.4 Interprocess Communication

Processes executing concurrently in the operating system may be either independent processes or
cooperating processes. A process is independent if it cannot affect or be affected by the other processes
executing in the system.
Any process that does not share data with any other process is independent. A process is cooperating if it
can affect or be affected by the other processes executing in the system.

There are several reasons for providing an environment that allows process cooperation:
• Information sharing. Since several users may be interested in the same piece of information (for
instance, a shared file), we must provide an environment to allow concurrent access to such information.

26

• Computation speedup. If we want a particular task to run faster, we must break it into subtasks, each of
which will be executing in parallel with the others. Notice that such a speedup can be achieved only if the
computer has multiple processing elements (such as CPUs or I/O channels).
• Modularity. We may want to construct the system in a modular fashion, dividing the system functions
into separate processes or threads. • Convenience. Even an individual user may work on many tasks at
the same time. For instance, a user may be editing, printing, and compiling in parallel.

Cooperating processes require an interprocess communication (IPC) mechanism that will allow
them to exchange data and information. There are two fundamental models of interprocess
communication:

(1) shared memory and (2) message passing. In the shared-memory model, a region of memory
that is shared by cooperating processes is established. Processes can then exchange information by
reading and writing data to the shared region. In the message passing model, communication takes place
by means of messages exchanged between the cooperating processes.

Message passing is useful for exchanging smaller amounts of data, because no conflicts need be
avoided. Message passing is also easier to implement than is shared memory for intercomputer
communication. Shared memory allows maximum speed and convenience of communication, as it can be
done at memory speeds when within a computer.

Shared memory is faster than message passing, as message-passing systems are typically
implemented using system calls and thus require the more time consuming task of kernel intervention.

Shared-Memory Systems Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory region resides in the
address space of the process creating the shared-memory segment. Other processes that wish to
communicate using this shared-memory segment must attach it to their address space. The operating
system tries to prevent one process from accessing another process's memory. Shared memory requires
that two or more processes agree to remove this restriction. They can then exchange information by
reading and writing data in the shared areas. The form of the data and the location are determined by these
processes and are not under the operating system's control. The processes are also responsible for
ensuring that they are not writing to the same location simultaneously.
 Message-Passing Systems The scheme requires that these processes share a region of memory

and that the code for accessing and manipulating the shared memory be written explicitly by the

application programmer. Another way to achieve the same effect is for the operating system to provide

the means for cooperating processes to communicate with each other via a message-passing facility.

Message passing provides a mechanism to allow processes to communicate and to synchronize their

27

actions without sharing the same address space and is particularly useful in a distributed environment,

where the communicating processes may reside on different computers connected by a network.

 A message-passing facility provides at least two operations: send(message) and receive(message).

Messages sent by a process can be of either fixed or variable size. If only fixed-sized messages can be

sent, the system-level implementation is straightforward. This restriction, however, makes the task of

programming more difficult. Conversely, variable-sized messages require a more complex system-level

implementation, but the programming task becomes simpler. This is a common kind of tradeoff seen

throughout operating system design.

Naming

Processes that want to communicate must have a way to refer to each other. They can use either direct or
indirect communication.
Under direct communication, each process that wants to communicate must explicitly name the recipient
or sender of the communication. In this scheme, the send.0 and receive() primitives are defined as:
• send(P, message)—Send a message to process P.
• receive (Q, message)—Receive a message from process Q.
A communication link in this scheme has the following properties:
• A link is established automatically between every pair of processes that want to communicate. The
processes need to know only each other's identity to communicate.
• A link is associated with exactly two processes.
• Between each pair of processes, there exists exactly one link.

The disadvantage in both of these schemes (symmetric and asymmetric) is the limited modularity of the
resulting process definitions. Changing the identifier of a process may necessitate examining all other
process definitions.

Synchronization

Communication between processes takes place through calls to send() and receive () primitives. There are
different design options for implementing each primitive. Message passing may be either blocking or
nonblocking— also known as synchronous and asynchronous.
• Blocking send- The sending process is blocked until the message is received by the receiving process or
by the mailbox.
• Nonblocking send- The sending process sends the message and resumes operation.
• Blocking receive- The receiver blocks until a message is available.
• Nonblocking receive- The receiver retrieves either a valid message or a null.

Buffering

Whether communication is direct or indirect, messages exchanged by communicating processes reside in
a temporary queue. Basically, such queues can be implemented in three ways:
• Zero capacity- The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block until the recipient receives the
message.
• Bounded capacity- The queue has finite length n; thus, at most n messages can reside in it. If the queue
is not full when a new message is sent, the message is placed in the queue (either the message is copied or
a pointer to the message is kept), and the sender can continue execution without waiting. The links
capacity is finite, however. If the link is full, the sender must block until space is available in the queue.

28

• Unbounded capacity- The queues length is potentially infinite; thus, any number of messages can wait
in it. The sender never blocks.

1.3.5 Examples of IPC Systems

An Example: POSIX Shared Memory

Several IPC mechanisms are available for POSIX systems, including shared memory and message
passing. A process must first create a shared memory segment using the shmget () system call (shmget ()
is derived from SHared Memory GET).

The following example illustrates the use of shmget ():
segment_id = shmget(IPCJPRIVATE, size, SJRUSR | SJVVUSR) ;

This first parameter specifies the key (or identifier) of the shared-memory segment. If this is set to IPC-
PRIVATE, a new shared-memory segment is created. The second parameter specifies the size (in bytes)
of the shared memory segment. Finally, the third parameter identifies the mode, which indicates how the
shared-memory segment is to be used—that is, for reading, writing, or both. By setting the mode to
SJRUSR | SJVVUSR, we are indicating that the owner may read or write to the shared memory segment.

Processes that wish to access a shared-memory segment must attach it to their address space
using the shmat () (SHared Memory ATtach) system call.

The call to shmat () expects three parameters as well. The first is the integer identifier of the
shared-memory segment being attached, and the second is a pointer location in memory indicating where
the shared memory will be attached. If we pass a value of NULL, the operating system selects the location
on the user's behalf. The third parameter identifies a flag that allows the shared memory region to be
attached in read-only or read-write mode; by passing a parameter of 0, we allow both reads and writes to
the shared region.

The third parameter identifies a mode flag. If set, the mode flag allows the shared-memory region
to be attached in read-only mode; if set to 0, the flag allows both reads and writes to the shared region.
We attach a region of shared memory using shmat () as follows:

shared_memory = (char *) shmat(id, NULL, 0);
If successful, shmat () returns a pointer to the beginning location in memory where the shared-memory
region has been attached.

An Example: Windows XP

The Windows XP operating system is an example of modern design that employs modularity to increase
functionality and decrease the time needed to implement new features. Windows XP provides support for
multiple operating environments, or subsystems, with which application programs communicate via a
message-passing mechanism. The application programs can be considered clients of the Windows XP
subsystem server.
The message-passing facility in Windows XP is called the local procedure call (LPC) facility. The LPC
in Windows XP communicates between two processes on the same machine. It is similar to the standard
RPC mechanism that is widely used, but it is optimized for and specific to Windows XP. Windows XP
uses a port object to establish and maintain a connection between two processes. Every client that calls a
subsystem needs a communication channel, which is provided by a port object and is never inherited.
Windows XP uses two types of ports: connection ports and communication ports. They are really the
same but are given different names according to how they are used. Connection ports are named objects
and are visible to all processes

The communication works as follows:
• The client opens a handle to the subsystem's connection port object.

29

• The client sends a connection request.
• The server creates two private communication ports and returns the handle to one of them to the client.
• The client and server use the corresponding port handle to send messages or callbacks and to listen for
replies.

Windows XP uses two types of message-passing techniques over a port that the client specifies when it
establishes the channel. The simplest, which is used for small messages, uses the port's message queue as
intermediate storage and copies the message from one process to the other. Under this method, messages
of up to 256 bytes can be sent. If a client needs to send a larger message, it passes the message through a
section object, which sets up a region of shared memory. The client has to
decide when it sets up the channel whether or not it will need to send a large message. If the client
determines that it does want to send large messages, it asks for a section object to be created. Similarly, if
the server decides that replies will be large, it creates a section object. So that the section object can be
used, a small message is sent that contains a pointer and size information about the section object. This
method is more complicated than the first method, but it avoids data copying. In both cases, a callback
mechanism can be used when either the client or the server cannot respond immediately to a request.

30

NIT II

2.1 THREADS

2.1.1 Overview

2.1.2 Multicore Programming

2.1.3 Multithreading Models

Single & Multithreaded Processes

Benefits

 Responsiveness
 Resource Sharing
 Economy
 Utilization of MP Architectures

User Threads

 Thread management done by user-level threads library
 Three primary thread libraries:

 POSIX Pthreads
 Win32 threads
 Java threads

Multithreading Models

 Many-to-One
 One-to-One
 Many-to-Many

31

Many-to-One

One-to-One

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads
 Allows the operating system to create a sufficient number of kernel threads
 Solaris prior to version 9
 Windows NT/2000 with the Thread Fiber package

32

2.1.4 Thread Libraries

2.1.5 Implicit Threading
2.1.6 Threading Issues

 Semantics of fork() and exec() system calls
 Thread cancellation
 Signal handling
 Thread pools
 Thread specific data
 Scheduler activations

Thread Cancellation

 Terminating a thread before it has finished
 Two general approaches:

 Asynchronous cancellation terminates the target thread immediately
 Deferred cancellation allows the target thread to periodically check if it should be

cancelled

Windows XP Threads

 Implements the one-to-one mapping
 Each thread contains

 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area are known as the context of the threads
 The primary data structures of a thread include:

 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

Linux Threads
 Linux refers to them as tasks rather than threads
 Thread creation is done through clone() system call
 clone() allows a child task to share the address space of the parent task (process)

Java Threads

 Java threads are managed by the JVM
 Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

33

2.2 Process Synchronization

 Concurrent access to shared data may result in data inconsistency (change in behavior)
 Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating

processes
 Suppose that we wanted to provide a solution to the “producer-consumer” problem that fills all

the buffers.
 We can do so by having an integer variable “count” that keeps track of the number of full buffers.
 Initially, count is set to 0.
 It is incremented by the producer after it produces a new buffer.
 It is decremented by the consumer after it consumes a buffer.

Producer
while (true) {

 /* produce an item and put in next Produced */
 while (count == BUFFER_SIZE)
 ; // do nothing
 buffer [in] = next Produced;
 in = (in + 1) % BUFFER_SIZE;
 count++;
}

Consumer
while (true) {
 while (count == 0)
 ; // do nothing
 next Consumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 count--;
 /* consume the item in next Consumed
 }

2.2.1 Critical section problem:- A section of code which reads or writes shared data.

Race Condition

• The situation where two or more processes try to access and manipulate the same data and output
of the process depends on the orderly execution of those processes is called as Race Condition.

• count++ could be implemented as
 register1 = count
 register1 = register1 + 1
 count = register1

• count-- could be implemented as
 register2 = count
 register2 = register2 - 1
 count = register2

• Consider this execution interleaving with “count = 5” initially:
– S0: producer execute register1 = count {register1 = 5}
– S1: producer execute register1 = register1 + 1 {register1 = 6}
– S2: consumer execute register2 = count {register2 = 5}

34

– S3: consumer execute register2 = register2 - 1 {register2 = 4}
– S4: producer execute count = register1 {count = 6 }
– S5: consumer execute count = register2 {count = 4}

Requirements for the Solution to Critical-Section Problem

1. Mutual Exclusion: - If process Pi is executing in its critical section, then no other processes can
be executing in their critical sections

2. Progress: - If no process is executing in its critical section and there exist some processes that
wish to enter their critical section, then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely.

3. Bounded Waiting: - A bound must exist on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its critical
section and before that request is granted.

 To general approaches are used to handle critical sections in operating systems: (1) Preemptive
Kernel (2) Non Preemptive Kernel

– Preemptive Kernel allows a process to be preempted while it is running in kernel mode.
– Non Preemptive Kernel does not allow a process running in kernel mode to be

preempted. (these are free from race conditions)

2.2.2 Peterson’s Solution

• It is restricted to two processes that alternates the execution between their critical and remainder
sections.

• Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted.
• The two processes share two variables:

– int turn;
– Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical section.
• The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true

implies that process Pi is ready!
Note:- Peterson’s Solution is a software based solution.

Algorithm for Process Pi

 while (true) {
 flag[i] = TRUE;
 turn = j;
 while (flag[j] && turn == j);
 CRITICAL SECTION
 flag[i] = FALSE;
 REMAINDER SECTION
 }
 Fig: structure of process Pi in Peterson’s solution

 Solution to Critical Section Problem using Locks.
 do{
 acquire lock

 Critical Section
 release lock

35

 Remainder Section

 }while (True);
Note:- Race Conditions are prevented by protecting the
 critical region by the locks.

2.2.3 Synchronization Hardware

• In general we can provide any solution to critical section problem by using a simple tool called as
LOCK where we can prevent the race condition.

• Many systems provide hardware support (hardware instructions available on several systems) for
critical section code.

• In UniProcessor hardware environment by disabling interrupts we can solve the critical section
problem. So that Currently running code would execute without any preemption .

• But by disabling interrupts on multiprocessor systems is time taking so that it is inefficient
compared to UniProcessor system.

• Now a days Modern machines provide special atomic hardware instructions that allow us to either
test memory word and set value Or swap contents of two memory words automatically i.e. done
through an uninterruptible unit.

Special Atomic hardware Instructions

• TestAndSet()
• Swap()
• The TestAndSet() Instruction is one kind of special atomic hardware instruction that allow us to

test memory and set the value. We can provide Mutual Exclusion by using TestAndSet()
instruction.

• Definition:
 Boolean TestAndSet (Boolean *target)
 {
 Boolean rv = *target;
 *target = TRUE;
 return rv:
 }

• Mutual Exclusion Implementation with TestAndSet()
• To implement Mutual Exclusion using TestAndSet() we need to declare Shared Boolean variable

called as ‘lock’ (initialized to false) .
• Solution:

 while (true) {
 while (TestAndSet (&lock))
 ; /* do nothing
 // critical section
 lock = FALSE;
 // remainder section
 }

• The Swap() Instruction is another kind of special atomic hardware instruction that allow us to
swap the contents of two memory words.

• By using Swap() Instruction we can provide Mutual Exclusion.
• Definition:-

 void Swap (Boolean *a, Boolean *b)
 {
 Boolean temp = *a;

36

 *a = *b;
 *b = temp:
 }

• Shared Boolean variable called as ‘lock’ is to be declared to implement Mutual Exclusion in
Swap() also, which is initialized to FALSE.

 Solution:
 while (true) {
 key = TRUE;
 while (key == TRUE)
 Swap (&lock, &key);

 // critical section
 lock = FALSE;
 // remainder section
 }
Note:- Each process has a local Boolean variable called as ‘key’.

2.2.4 Mutex Locks

2.2.5 Semaphores

• As it is difficult for the application programmer to use these hardware instructions, to overcome
this difficulty we use the synchronization tool called as Semaphore (that does not require busy
waiting)

• Semaphore S – integer variable, apart from this initialization we can access this only through two
standard atomic operations called as wait() and signal().

• Originally the wait() and signal() operations are termed as P() and V() respectively. Which are
termed from the Dutch words “proberen” and “verhogen”.

• The definition for wait() is as follows:
wait (S) {
 while S <= 0
 ; // no-op
 S--;
 }

• The definition for signal() is as follows:
signal (S) {
 S++;
 }

• All the modifications to the integer value of the semaphore in the wait() and signal() atomic
operations must be executed indivisibly. i.e. when one process changes the semaphore value, no
other process will change the same semaphore value simultaneously.

• Usage of semaphore:- we have two types of semaphores
– Counting semaphore
– Binary Semaphore.

• The value of the Counting Semaphore can ranges over an unrestricted domain.
• The value of the Binary Semaphore can ranges between 0 and 1 only.
• In some systems the Binary Semaphore is called as Mutex locks, because, as they are locks to

provide the mutual exclusion.
• We can use the Binary Semaphore to deal with critical section problem for multiple processes.
• Counting Semaphores are used to control the access of given resource each of which consists of

some finite no. of instances. This counting semaphore is initialized to number of resources
available.

37

• The process that wish to use a resource must performs the wait() operation (count is decremented
)

• The process that releases a resource must performs the signal() operation (count is incremented)
• When the count for the semaphore is 0 means that all the resources are being used by some

processes. Otherwise resources are available for the processes to allocate .
• When a process is currently using a resource means that it blocks the resource until the count

becomes > 0.
• For example:

– Let us assume that there are two processes p0 and p1 which consists of two statements s0

& s1 respectively.
– Also assume that these two processes are running concurrently such that process p1

executes the statement s1 only after process p0 executes the statement s0.
– Let us assume the process p0 & p1 share the same semaphore called as “synch” which is

initialized to 0 by inserting the statements
 S0;
 Signal (synch);
 in process p0 and the statements
 wait (synch);
 S1;
 in process p1 .
Implementation:

• The main disadvantage of the semaphore definition is, it requires the busy waiting.
• Because when one process is in critical section and if another process needs to enter in to the

critical section must have to loop in the entry code continuously.
Implementation of semaphore with no busy waiting:

• To overcome the need of the busy waiting we have to modify the definition of wait() and signal()
operations. i.e. when a process executes wait() operation and finds that it is not positive then it
must wait.

• Instead of engaging the busy wait, the process block itself so that there will be a chance to the
CPU to select another process for execution. It is done by block() operation.

– Blocked processes are placed in waiting queue.
• Later the process that has already been blocked by itself is restarted by using wakeup() operation,

so that the process will move from waiting state to ready state.
– Blocked processes that are placed in waiting queue are now placed into ready queue.

• To implement the semaphore with no busy waiting we need to define the semaphore of the wait()
and signal() operation by using the ‘C’ Struct. Which is as follows:

 typedef struct {
 int value;
 struct process *list;
 }semaphore;

– i.e. each semaphore has an integer value stored in the variable “value” and the list of
processes list.

– When a process perform the wait() operation on the semaphore then it will adds list of
processes to the list .

– When a process perform the signal() operation on the semaphore then it removes the
processes from the list.

Semaphore Implementation with no Busy waiting
Implementation of wait: (definition of wait with no busy waiting)
 wait (S){
 value--;
 if (value < 0) {
 add this process to waiting queue
 block(); }

38

 }
Implementation of signal: (definition of signal with no busy waiting)
 Signal (S){
 value++;
 if (value <= 0) {
 remove a process P from the waiting queue
 wakeup(P); }
 }
Deadlock and Starvation

• The implementation of semaphore with waiting queue may result in the situation where two or
more processes are waiting for an event is called as Deadlocked.

• To illustrate this, let us assume two processes P0 and P1 each accessing two semaphores S and Q
which are initialized to 1 :-

 P0 P1
 wait (S); wait (Q);
 wait (Q); wait (S);
 . .
 . .
 . .
 signal (S); signal (Q);
 signal (Q); signal (S);

• Now process P0 executes wait(S) and P1 executes wait(Q), assume that P0 wants to execute
wait(Q) and P1 executes wait(S). But it is possible only after process P1 executes the signal(Q)
and P0 executes signal(S).

• Starvation or indefinite blocking. A process may never be removed from the semaphore queue
in which it is suspended.

2.2.6 Classical Problems of Synchronization

• Bounded-Buffer Problem
• Readers and Writers Problem
• Dining-Philosophers Problem

Bounded-Buffer Problem

• Let us assume N buffers, each can hold only one item.
• Semaphore mutex initialized to the value 1 which is used to provide mutual exclusion.
• Semaphore full initialized to the value 0
• Semaphore empty initialized to the value N.
• Semaphore full and empty are used to count the number of buffers.
• The structure of the producer process

 while (true) {
 // produce an item
 wait (empty);
 wait (mutex);
 // add the item to the buffer
 signal (mutex);
 signal (full);
 }
The structure of the consumer process
 while (true) {
 wait (full);
 wait (mutex);

39

 // remove an item from buffer
 signal (mutex);
 signal (empty);

 // consume the removed item
 }

Readers-Writers Problem

• A data set is shared among a number of concurrent processes
– Readers – only read the data set, do not perform any updates
– Writers – can both read and write the data set (perform the updates).

• If two readers read the shared data simultaneously, there will be no problem. If both a reader(s)
and writer share the same data simultaneously then there will be a problem.

• In the solution of reader-writer problem, the reader process share the following data structures:
Semaphore Mutex, wrt;
int readcount;

• Where Semaphore mutex is initialized to 1.
 Semaphore wrt is initialized to 1.
 Integer readcount is initialized to 0.

The structure of a writer process

 while (true) {
 wait (wrt) ;

 // writing is performed
 signal (wrt) ;
 }

The structure of a reader process
 while (true) {
 wait (mutex) ;
 readcount ++ ;
 if (readcount == 1) wait (wrt) ;
 signal (mutex)

 // reading is performed
 wait (mutex) ;
 readcount - - ;
 if (readcount == 0) signal (wrt) ;
 signal (mutex) ;
 }

Dining-Philosophers Problem

40

• Shared data

– Bowl of rice (data set)
– Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem

• The structure of Philosopher i:
 While (true) {
 wait (chopstick[i]);
 wait (chopStick[(i + 1) % 5]);

 // eat
 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think
}

Problems with Semaphores

• Incorrect use of semaphore operations:
– signal (mutex) …. wait (mutex) Case 1
– wait (mutex) … wait (mutex) Case 2
– Omitting of wait (mutex) or signal (mutex) (or both) Case 3

• As the semaphores used incorrectly as above may results the timing errors.
• Case 1 Several processes may execute in critical section by violating the mutual

exclusion requirement.
• Case 2 Dead lock will occur.
• Case 3 either mutual exclusion is violated or dead lock will occur
• To deal with such type of errors, researchers have developed high-level language constructs.
• One type of high-level language constructs that is to be used to deal with the above type of errors

is the Monitor type.

2.2.7 Monitors

• A high-level abstraction that provides a convenient and effective mechanism for process
synchronization.

• A procedure can access only those variables that are declared in a monitor and formal parameters
.

• Only one process may be active within the monitor at a time
Syntax of the monitor :-

41

monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }
 …
 procedure Pn (…) {……}
 Initialization code (….) { … }
 …
 }

Schematic view of a Monitor

Condition Variables

• Synchronization scheme is not effective within the monitors.
• A programmer who needs to write the synchronization scheme can define one or more variables

of type Condition
• condition x, y;
• The only operations that can be invoked on a condition variable are wait() and signal().
• The operations are

– x.wait () – a process that request an operation is
– suspended until another process invokes x.signal ()
– x.signal () – resumes only one suspended processes (if any) that

 invoked x.wait ()
• Now suppose that when x.signal() operation is invoked by a process P, there is a suspended

process Q associated with condition x. if Q is allowed to resume its execution, the signaling
process P must wait. Else both P and Q would be active simultaneously with in a monitor.

• There are two possibilities
– 1) signal and wait:- P either waits until Q leaves the monitor or waits for

 another condition.
– 2) signal and continue:- Q either waits Until P leaves the monitor or waits for

 another condition.
Monitor with Condition Variables

42

Solution to Dining Philosophers using Monitors
monitor DP
 {
 enum { THINKING, HUNGRY, EATING} state [5] ;
 condition self [5];
 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self [i].wait;
 }
 void putdown (int i) {
 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }
void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }
 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

Each philosopher i invokes the operations pickup()
 and putdown() in the following sequence:
 dp.pickup (i)
 EAT
 dp.putdown (i)

Monitor Implementation Using Semaphores
Variables
 semaphore mutex; // (initially = 1)
 semaphore next; // (initially = 0)

43

 int next-count = 0;
Each procedure F will be replaced by
 wait(mutex);
 …
 body of F;
 …
 if (next-count > 0)
 signal(next)
 else
 signal(mutex);
Mutual exclusion within a monitor is ensured.

Monitor Implementation
For each condition variable x, we have:
 semaphore x-sem; // (initially = 0)
 int x-count = 0;
The operation x.wait can be implemented as:

 x-count++;
 if (next-count > 0)
 signal(next);
 else
 signal(mutex);
 wait(x-sem);
 x-count--;
The operation x.signal can be implemented as:
 if (x-count > 0) {
 next-count++;
 signal(x-sem);
 wait(next);
 next-count--;
 }

2.2.8 Synchronization Examples

• Windows XP
• Linux

Windows XP Synchronization

• Uses interrupt masks to protect access to global resources on uniprocessor systems
• Uses spinlocks on multiprocessor systems
• Also provides dispatcher objects which may act as either mutexes and semaphores
• Dispatcher objects may also provide events

– An event acts much like a condition variable
Linux Synchronization

• Linux:
– disables interrupts to implement short critical sections

• Linux provides:
– semaphores
– spin locks

2.2.9 Alternative approaches

2.3 CPU Scheduling

44

 Maximum CPU utilization obtained with multiprogramming
 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait
 CPU burst distribution

Alternating Sequence of CPU & I/O Bursts

CPU Scheduler

 Selects from among the processes in memory that are ready to execute, and allocates the CPU to
one of them

 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive

Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-term scheduler;
this involves:

 switching context
 switching to user mode
 jumping to the proper location in the user program to restart that program

 Dispatch latency – time it takes for the dispatcher to stop one process and start another running

2.3.1 Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible
 Throughput – No. of processes that complete their execution per time unit
 Turnaround time – amount of time to execute a particular process
 Waiting time – amount of time a process has been waiting in the ready queue
 Response time – amount of time it takes from when a request was submitted until the first

response is produced, not output (for time-sharing environment)
Optimization Criteria

 Max CPU utilization
 Max throughput

45

 Min turnaround time
 Min waiting time
 Min response time

First-Come, First-Served (FCFS) Scheduling
 Process Burst Time
 P1 24
 P2 3
 P3 3
Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

 Suppose that the processes arrive in the order

 P2 , P3 , P1
 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case
 Convoy effect short process behind long process

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to schedule the
process with the shortest time

 Two schemes:
 nonpreemptive – once CPU given to the process it cannot be preempted until completes

its CPU burst
 preemptive – if a new process arrives with CPU burst length less than remaining time of

current executing process, preempt. This scheme is known as the
Shortest-Remaining-Time-First (SRTF)

 SJF is optimal – gives minimum average waiting time for a given set of processes

Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4
SJF (non-preemptive)

46

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Preemptive SJF

Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

 SJF (preemptive)

 Average waiting time = (9 + 1 + 0 +2)/4 = 3

Priority Scheduling

 A priority number (integer) is associated with each process
 The CPU is allocated to the process with the highest priority (smallest integer highest priority)

 Preemptive
 Non preemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst time
 Problem Starvation – low priority processes may never execute
 Solution Aging - as time progresses increase the priority of the process (means Aging increases

the priority of the processes so that to terminate in finite amount of time).

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After
this time has elapsed, the process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n
of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q
time units.

 Performance
 q large FIFO
 q small q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 20

Process Burst Time
 P1 53
 P2 17
 P3 68

47

 P4 24
The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

Multilevel Queue Scheduling

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm
 foreground – RR
 background – FCFS

 Scheduling must be done between the queues
 Fixed priority scheduling; (i.e., serve all from foreground then from background).

Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU time which it can schedule

amongst its processes; i.e., 80% to foreground in RR
 20% to background in FCFS

Multilevel Feedback Queue Scheduling

 A process can move between the various queues; aging can be implemented this way
 Multilevel-feedback-queue scheduler defined by the following parameters:

 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will enter when that process needs

service

48

2.3.2 Scheduling Algorithms
2.3.3 Thread Scheduling

 Local Scheduling – How the threads library decides which thread to put onto an available LWP
 Global Scheduling – How the kernel decides which kernel thread to run next

2.3.4 Multiple-Processor Scheduling
 CPU scheduling more complex when multiple CPUs are available
 Homogeneous processors within a multiprocessor
 Load sharing
 Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating

the need for data sharing

Operating System Examples

Windows XP Priorities

Linux Scheduling

 Two algorithms: time-sharing and real-time
 Time-sharing

 Prioritized credit-based – process with most credits is scheduled next
 Credit subtracted when timer interrupt occurs
 When credit = 0, another process chosen
 When all processes have credit = 0, recrediting occurs

 Based on factors including priority and history
 Real-time

 Soft real-time
 Posix.1b compliant – two classes

 FCFS and RR

49

 Highest priority process always runs first
Java Thread Scheduling

 JVM Uses a Preemptive, Priority-Based Scheduling Algorithm
 FIFO Queue is Used if There Are Multiple Threads With the Same Priority

JVM Schedules a Thread to Run When:
1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not

 2.3.5 Real –Time CPU Scheduling

 2.3.6 Algorithm Evaluation

50

UNIT III

3.1 MEMORY MANAGEMENT

 Memory management is concerned with managing the primary memory. Memory consists of

array of bytes or words each with their own address. The instructions are fetched from the memory

by the CPU based on the value program counter.

Functions of memory management:

 Keeping track of status of each memory location.

 Determining the allocation policy.

 Memory allocation technique.

 De-allocation technique.

Address Binding:

 Programs are stored on the secondary storage disks as binary executable files. When the programs
are to be executed they are brought in to the main memory and placed within a process. The collection of
processes on the disk waiting to enter the main memory forms the input queue. One of the processes
which are to be executed is fetched from the queue and placed in the main memory. During the execution
it fetches instruction and data from main memory. After the process terminates it returns back the
memory space. During execution the process will go through different steps and in each step the address
is represented in different ways. In source program the address is symbolic. The compiler converts the
symbolic address to re-locatable address. The loader will convert this re-locatable address to absolute
address.

Binding of instructions and data can be done at any step along the way:

 Compile time:-If we know whether the process resides in memory then absolute code can be

generated. If the static address changes then it is necessary to re-compile the code from the beginning.

 Load time:-If the compiler doesn’t know whether the process resides in memory then it generates

the re-locatable code. In this the binding is delayed until the load time.

 Execution time:-If the process is moved during its execution from one memory segment to

another then the binding is delayed until run time. Special hardware is used for this. Most of the general

purpose operating system uses this method.

Logical versus physical address:

51

 The address generated by the CPU is called logical address or virtual address. The address seen

by the memory unit i.e., the one loaded in to the memory register is called the physical address. Compile

time and load time address binding methods generate some logical and physical address. The execution

time addressing binding generate different logical and physical address. Set of logical address space

generated by the programs is the logical address space. Set of physical address corresponding to these

logical addresses is the physical address space. The mapping of virtual address to physical address during

run time is done by the hardware device called memory management unit (MMU). The base register is

also called re-location register. Value of the re-location register is added to every address generated by the

user process at the time it is sent to memory.

Dynamic re-location using a re-location registers

 The above figure shows that dynamic re-location which implies mapping from virtual addresses

space to physical address space and is performed by the hardware at run time. Re-location is performed

by the hardware and is invisible to the user dynamic relocation makes it possible to move a partially

executed process from one area of memory to another without affecting.

Dynamic Loading:

 For a process to be executed it should be loaded in to the physical memory. The size of the

process is limited to the size of the physical memory. Dynamic loading is used to obtain better memory

utilization. In dynamic loading the routine or procedure will not be loaded until it is called. Whenever a

routine is called, the calling routine first checks whether the called routine is already loaded or not. If it is

not loaded it cause the loader to load the desired program in to the memory and updates the programs

address table to indicate the change and control is passed to newly called routine.

Advantage: Gives better memory utilization. Unused routine is never loaded. Do not need special

52

operating system support. This method is useful when large amount of codes are needed to handle in

frequently occurring cases.

Dynamic linking and Shared libraries:

 Some operating system supports only the static linking. In dynamic linking only the main

program is loaded in to the memory. If the main program requests a procedure, the procedure is loaded

and the link is established at the time of references. This linking is postponed until the execution time.

With dynamic linking a “stub” is used in the image of each library referenced routine. A “stub” is a piece

of code which is used to indicate how to locate the appropriate memory resident library routine or how to

load library if the routine is not already present. When “stub” is executed it checks whether the routine is

present is memory or not. If not it loads the routine in to the memory. This feature can be used to update

libraries i.e., library is replaced by a new version and all the programs can make use of this library. More

than one version of the library can be loaded in memory at a time and each program uses its version of the

library. Only the programs that are compiled with the new version are affected by the changes

incorporated in it. Other programs linked before new version is installed will continue using older

libraries this type of system is called “shared library”.

3.1.1 Swapping

 Swapping is a technique of temporarily removing inactive programs from the memory of the

system. A process can be swapped temporarily out of the memory to a backing store and then brought

back in to the memory for continuing the execution. This process is called swapping.

Eg:-In a multi-programming environment with a round robin CPU scheduling whenever the time quantum

expires then the process that has just finished is swapped out and a new process swaps in to the memory

for execution.

 A variation of swap is priority based scheduling. When a low priority is executing and if a high

priority process arrives then a low priority will be swapped out and high priority is allowed for execution.

This process is also called as Roll out and Roll in.

 Normally the process which is swapped out will be swapped back to the same memory space that

is occupied previously. This depends upon address binding.

 If the binding is done at load time, then the process is moved to same memory location. If the

binding is done at run time, then the process is moved to different memory location. This is because the

53

physical address is computed during run time.

 Swapping requires backing store and it should be large enough to accommodate the copies of all

memory images. The system maintains a ready queue consisting of all the processes whose memory

images are on the backing store or in memory that are ready to run. Swapping is constant by other factors:

To swap a process, it should be completely idle. A process may be waiting for an i/o operation. If the i/o

is asynchronously accessing the user memory for i/o buffers, then the process cannot be swapped.

3.1.2 Contiguous memory allocation:

 One of the simplest method for memory allocation is to divide memory in to several fixed

partition. Each partition contains exactly one process. The degree of multi-programming depends on the

number of partitions. In multiple partition method, when a partition is free, process is selected from the

input queue and is loaded in to free partition of memory. When process terminates, the memory partition

becomes available for another process. Batch OS uses the fixed size partition scheme.

 The OS keeps a table indicating which part of the memory is free and is occupied. When

the process enters the system it will be loaded in to the input queue. The OS keeps track of the memory

requirement of each process and the amount of memory available and determines which process to

allocate the memory. When a process requests, the OS searches for large hole for this process, hole is a

large block of free memory available. If the hole is too large it is split in to two. One part is allocated to

the requesting process and other is returned to the set of holes. The set of holes are searched to determine

which hole is best to allocate. There are three strategies to select a free hole:

 First bit:-Allocates first hole that is big enough. This algorithm scans memory from the

beginning and selects the first available block that is large enough to hold the process.

 Best bit:-It chooses the hole i.e., closest in size to the request. It allocates the smallest

hole i.e., big enough to hold the process.

 Worst fit:-It allocates the largest hole to the process request. It searches for the largest

hole in the entire list.

Operating Systems

 First fit and best fit are the most popular algorithms for dynamic memory allocation. First fit is

generally faster. Best fit searches for the entire list to find the smallest hole i.e., large enough. Worst fit

reduces the rate of production of smallest holes. All these algorithms suffer from fragmentation.

54

Memory Protection:

 Memory protection means protecting the OS from user process and protecting process

from one another. Memory protection is provided by using a re-location register, with a limit register.

Re-location register contains the values of smallest physical address and limit register contains range of

logical addresses.

 (Re-location = 100040 and limit = 74600). The logical address must be less than the limit

register; the MMU maps the logical address dynamically by adding the value in re-location register.

When the CPU scheduler selects a process for execution, the dispatcher loads the re-location and limit

register with correct values as a part of context switch. Since every address generated by the CPU is

checked against these register we can protect the OS and other users programs and data from being

modified.

Fragmentation:

 Memory fragmentation can be of two types: Internal Fragmentation External Fragmentation

 Internal Fragmentation there is wasted space internal to a portion due to the fact that block of data

loaded is smaller than the partition. Eg:-If there is a block of 50kb and if the process requests 40kb and if

the block is allocated to the process then there will be 10kb of memory left.

 External Fragmentation exists when there is enough memory space exists to satisfy the request,

but it not contiguous i.e., storage is fragmented in to large number of small holes.

 External Fragmentation may be either minor or a major problem.

 One solution for over-coming external fragmentation is compaction. The goal is to move all the

free memory together to form a large block. Compaction is not possible always. If the relocation is static

and is done at load time then compaction is not possible. Compaction is possible if the re-location is

dynamic and done at execution time.

 Another possible solution to the external fragmentation problem is to permit the logical address

space of a process to be non-contiguous, thus allowing the process to be allocated physical memory

whenever the latter is available.

3.1.3 Segmentation

 Most users do not think memory as a linear array of bytes rather the users thinks memory as a

55

collection of variable sized segments which are dedicated to a particular use such as code, data, stack,

heap etc. A logical address is a collection of segments. Each segment has a name and length. The address

specifies both the segment name and the offset within the segments. The users specify address by using

two quantities: a segment name and an offset. For simplicity the segments are numbered and referred by

a segment number. So the logical address consists of <segment number, offset>.

 Hardware support:

 We must define an implementation to map 2D user defined address in to 1D physical address.

This mapping is affected by a segment table. Each entry in the segment table has a segment base and

segment limit. The segment base contains the starting physical address where the segment resides and

limit specifies the length of the segment.

The use of segment table is shown in the above figure: Logical address consists of two parts:

segment number‘s’ and an offset‘d’ to that segment. The segment number is used as an index to segment

table. The offset’d’ must be in between 0 and limit, if not an error is reported to OS. If legal the offset is

added to the base to generate the actual physical address. The segment table is an array of base limit

register pairs.

Protection and Sharing:

A particular advantage of segmentation is the association of protection with the segments. The

memory mapping hardware will check the protection bits associated with each segment table entry to

prevent illegal access to memory like attempts to write in to read-only segment. Another advantage of

segmentation involves the sharing of code or data. Each process has a segment table associated with it.

Segments are shared when the entries in the segment tables of two different processes points to same

physical location. Sharing occurs at the segment table. Any information can be shared at the segment

level. Several segments can be shared so a program consisting of several segments can be shared. We can

also share parts of a program.

Advantages: Eliminates fragmentation. x Provides virtual growth. Allows dynamic segment growth.

Assist dynamic linking. Segmentation is visible.

56

Differences between segmentation and paging:-

Segmentation:

• Program is divided in to variable sized segments. x User is responsible for dividing the program

in to segments.

• Segmentation is slower than paging.

• Visible to user.

• Eliminates internal fragmentation.

• Suffers from external fragmentation.

• Process or user segment number, offset to calculate absolute address.

Paging:

• Programs are divided in to fixed size pages.

• Division is performed by the OS.

• Paging is faster than segmentation.

• Invisible to user.

• Suffers from internal fragmentation.

• No external fragmentation.

• Process or user page number, offset to calculate absolute address.

3.1.4 Paging

 Paging is a memory management scheme that permits the physical address space of a process to

be non-contiguous. Support for paging is handled by hardware. It is used to avoid external fragmentation.

Paging avoids the considerable problem of fitting the varying sized memory chunks on to the backing

store. When some code or date residing in main memory need to be swapped out, space must be found on

backing store.

Basic Method:

 Physical memory is broken in to fixed sized blocks called frames (f). Logical memory is broken

in to blocks of same size called pages (p). When a process is to be executed its pages are loaded in to

available frames from backing store. The blocking store is also divided in to fixed-sized blocks of same

57

size as memory frames. The following figure shows paging hardware:

 Logical address generated by the CPU is divided in to two parts: page number (p) and page offset

(d). The page number (p) is used as index to the page table. The page table contains base address of each

page in physical memory. This base address is combined with the page offset to define the physical

memory i.e., sent to the memory unit. The page size is defined by the hardware. The size of a power of 2,

varying between 512 bytes and 10Mb per page. If the size of logical address space is 2^m address unit

and page size is 2^n, then high order m-n designates the page number and n low order bits represents page

offset.

 Eg:-To show how to map logical memory in to physical memory consider a page size of 4 bytes

and physical memory of 32 bytes (8 pages). Logical address 0 is page 0 and offset 0. Page 0 is in

frame 5. The logical address 0 maps to physical address 20. [(5*4) + 0]. logical address 3 is page 0 and

offset 3 maps to physical address 23 [(5*4) + 3]. Logical address 4 is page 1 and offset 0 and page 1 is

mapped to frame 6. So logical address 4 maps to physical address 24 [(6*4) + 0]. Logical address 13 is

page 3 and offset 1 and page 3 is mapped to frame 2. So logical address 13 maps to physical address 9

[(2*4) + 1].

Hardware Support for Paging:

The hardware implementation of the page table can be done in several ways:

The simplest method is that the page table is implemented as a set of dedicated registers. These registers

must be built with very high speed logic for making paging address translation. Every accessed memory

58

must go through paging map. The use of registers for page table is satisfactory if the page table is small.

 If the page table is large then the use of registers is not visible. So the page table is kept in the main

memory and a page table base register [PTBR] points to the page table. Changing the page table requires

only one register which reduces the context switching type. The problem with this approach is the time

required to access memory location. To access a location [i] first we have to index the page table using

PTBR offset. It gives the frame number which is combined with the page offset to produce the actual

address. Thus we need two memory accesses for a byte.

 The only solution is to use special, fast, lookup hardware cache called translation look aside buffer

[TLB] or associative register. LB is built with associative register with high speed memory. Each register

contains two paths a key and a value.

 When an associative register is presented with an item, it is compared with all the key values, if

found the corresponding value field is return and searching is fast. TLB is used with the page table as

follows: TLB contains only few page table entries. When a logical address is generated by the CPU, its

page number along with the frame number is added to TLB. If the page number is found its frame

memory is used to access the actual memory. If the page number is not in the TLB (TLB miss) the

memory reference to the page table is made. When the frame number is obtained use can use it to access

the memory. If the TLB is full of entries the OS must select anyone for replacement. Each time a new

page table is selected the TLB must be flushed [erased] to ensure that next executing process do not use

wrong information. The percentage of time that a page number is found in the TLB is called HIT ratio.

Protection:

 Memory protection in paged environment is done by protection bits that are associated with each

frame these bits are kept in page table. x One bit can define a page to be read-write or read-only. To find

59

the correct frame number every reference to the memory should go through page table. At the same time

physical address is computed. The protection bits can be checked to verify that no writers are made to

read-only page. Any attempt to write in to read-only page causes a hardware trap to the OS. This

approach can be used to provide protection to read-only, read-write or execute-only pages. One more bit

is generally added to each entry in the page table: a valid-invalid bit.

 A valid bit indicates that associated page is in the processes logical address space and thus it is a legal or

valid page.

If the bit is invalid, it indicates the page is not in the processes logical addressed space and illegal. Illegal

addresses are trapped by using the valid-invalid bit.

 The OS sets this bit for each page to allow or disallow accesses to that page.

3.1.5 Structure Of Page Table

a. Hierarchical paging:

 Recent computer system support a large logical address apace from 2^32 to 2^64. In this system

the page table becomes large. So it is very difficult to allocate contiguous main memory for page table.

One simple solution to this problem is to divide page table in to smaller pieces. There are several ways to

accomplish this division.

One way is to use two-level paging algorithm in which the page table itself is also paged. Eg:-In a 32 bit

60

machine with page size of 4kb. A logical address is divided in to a page number consisting of 20 bits and

a page offset of 12 bit. The page table is further divided since the page table is paged, the page number is

further divided in to 10 bit page number and a 10 bit offset.

b. Hashed page table:

 Hashed page table handles the address space larger than 32 bit. The virtual page number is used

as hashed value. Linked list is used in the hash table which contains a list of elements that hash to the

same location.

 Each element in the hash table contains the following three fields: Virtual page number x Mapped

page frame value x Pointer to the next element in the linked list

Working:

Virtual page number is taken from virtual address. Virtual page number is hashed in to hash table.

 Virtual page number is compared with the first element of linked list. Both the values are

matched, that value is (page frame) used for calculating the physical address. If not match then entire

linked list is searched for matching virtual page number. Clustered pages are similar to hash table but one

difference is that each entity in the hash table refer to several pages.

c. Inverted Page Tables:

 Since the address spaces have grown to 64 bits, the traditional page tables become a problem.

Even with two level page tables. The table can be too large to handle. An inverted page table has only

entry for each page in memory. Each entry consisted of virtual address of the page stored in that read-only

location with information about the process that owns that page.

Each virtual address in the Inverted page table consists of triple <process-id , page number ,

offset >. The inverted page table entry is a pair <process-id , page number>. When a memory reference is

made, the part of virtual address i.e., <process-id , page number> is presented in to memory sub-system.

The inverted page table is searched for a match. If a match is found at entry I then the physical address <i

, offset> is generated. If no match is found then an illegal address access has been attempted. This scheme

61

decreases the amount of memory needed to store each page table, it increases the amount of time needed

to search the table when a page reference occurs. If the whole table is to be searched it takes too long.

Advantage:

• Eliminates fragmentation.

• Support high degree of multiprogramming.

• Increases memory and processor utilization.

• Compaction overhead required for the re-locatable partition scheme is also eliminated.

Disadvantage:

• Page address mapping hardware increases the cost of the computer.

• Memory must be used to store the various tables like page tables, memory map table etc.

• Some memory will still be unused if the number of available block is not sufficient for the

address space of the jobs to be run.

d. Shared Pages:

� Another advantage of paging is the possibility of sharing common code. This is useful in timesharing

environment. Eg:-Consider a system with 40 users, each executing a text editor. If the text editor is of

150k and data space is 50k, we need 8000k for 40 users. If the code is reentrant it can be shared. Consider

the following figure

 If the code is reentrant then it never changes during execution. Thus two or more processes can

execute same code at the same time. Each process has its own copy of registers and the data of two

processes will vary. Only one copy of the editor is kept in physical memory. Each user’s page table maps

to same physical copy of editor but date pages are mapped to different frames. So to support 40 users we

need only one copy of editor (150k) plus 40 copies of 50k of data space i.e., only 2150k instead of 8000k.

62

3.2 Virtual Memory

 Preceding sections talked about how to avoid memory fragmentation by breaking process

memory requirements down into smaller bites (pages), and storing the pages non-

contiguously in memory. However the entire process still had to be stored in memory

somewhere.

 In practice, most real processes do not need all their pages, or at least not all at once, for

several reasons:

o Error handling code is not needed unless that specific error occurs, some of which

are quite rare.

o Arrays are often over-sized for worst-case scenarios, and only a small fraction of

the arrays are actually used in practice.

o Certain features of certain programs are rarely used, such as the routine to balance

the federal budget. :-)

 The ability to load only the portions of processes that were actually needed (and only

when they were needed) has several benefits:

o Programs could be written for a much larger address space (virtual memory space

) than physically exists on the computer.

o Because each process is only using a fraction of their total address space, there is

more memory left for other programs, improving CPU utilization and system

throughput.

o Less I/O is needed for swapping processes in and out of RAM, speeding things

up.

 Figure below shows the general layout of virtual memory, which can be much larger

than physical memory:

Fig: Diagram showing virtual memory that is larger than physical memory

63

 Figure below shows virtual address space, which is the programmer’s logical view of

process memory storage. The actual physical layout is controlled by the process's page

table.

 Note that the address space shown in Figure is sparse - A great hole in the middle of the

address space is never used, unless the stack and/or the heap grow to fill the hole.

Fig: Virtual address space

 Virtual memory also allows the sharing of files and memory by multiple processes, with

several benefits:

o System libraries can be shared by mapping them into the virtual address space of

more than one process.

o Processes can also share virtual memory by mapping the same block of memory

to more than one process.

o Process pages can be shared during a fork() system call, eliminating the need to

copy all of the pages of the original (parent) process.

Fig: Shared library using virtual memory

64

Demand Paging

The basic idea behind demand paging is that when a process is swapped in, its pages are not

swapped in all at once. Rather they are swapped in only when the process needs them. (on

demand.) This is termed a lazy swapper, although a pager is a more accurate term.

Fig: Transfer of a paged memory to contiguous disk space

Basic Concepts

 The basic idea behind paging is that when a process is swapped in, the pager only loads

into memory those pages that it expects the process to need (right away.)

 Pages that are not loaded into memory are marked as invalid in the page table, using the

invalid bit. (The rest of the page table entry may either be blank or contain information

about where to find the swapped-out page on the hard drive.)

 If the process only ever accesses pages that are loaded in memory (memory resident

pages), then the process runs exactly as if all the pages were loaded in to memory.

65

Fig: Page table when some pages are not in main memory.

 On the other hand, if a page is needed that was not originally loaded up, then a page fault

trap is generated, which must be handled in a series of steps:

1. The memory address requested is first checked, to make sure it was a valid

memory request.

2. If the reference was invalid, the process is terminated. Otherwise, the page must

be paged in.

3. A free frame is located, possibly from a free-frame list.

4. A disk operation is scheduled to bring in the necessary page from disk. (This will

usually block the process on an I/O wait, allowing some other process to use the

CPU in the meantime.)

5. When the I/O operation is complete, the process's page table is updated with the

new frame number, and the invalid bit is changed to indicate that this is now a

valid page reference.

6. The instruction that caused the page fault must now be restarted from the

beginning, (as soon as this process gets another turn on the CPU.)

66

Fig: Steps in handling a page fault

 In an extreme case, NO pages are swapped in for a process until they are requested by

page faults. This is known as pure demand paging.

 In theory each instruction could generate multiple page faults. In practice this is very rare,

due to locality of reference.

 The hardware necessary to support virtual memory is the same as for paging and

swapping: A page table and secondary memory.

 A crucial part of the process is that the instruction must be restarted from scratch once the

desired page has been made available in memory. For most simple instructions this is not

a major difficulty. However there are some architectures that allow a single instruction to

modify a fairly large block of data, (which may span a page boundary), and if some of

the data gets modified before the page fault occurs, this could cause problems. One

solution is to access both ends of the block before executing the instruction, guaranteeing

that the necessary pages get paged in before the instruction begins.

Performance of Demand Paging

 Obviously there is some slowdown and performance hit whenever a page fault occurs and

the system has to go get it from memory, but just how big a hit is it exactly?

67

 There are many steps that occur when servicing a page fault (see book for full details),

and some of the steps are optional or variable. But just for the sake of discussion, suppose

that a normal memory access requires 200 nanoseconds, and that servicing a page fault

takes 8 milliseconds. (8,000,000 nanoseconds, or 40,000 times a normal memory access.

) With a page fault rate of p, (on a scale from 0 to 1), the effective access time is now:

(1 - p) * (200) + p * 8000000

= 200 + 7,999,800 * p

which clearly depends heavily on p! Even if only one access in 1000 causes a page fault,

the effective access time drops from 200 nanoseconds to 8.2 microseconds, a slowdown

of a factor of 40 times. In order to keep the slowdown less than 10%, the page fault rate

must be less than 0.0000025, or one in 399,990 accesses.

 A subtlety is that swap space is faster to access than the regular file system, because it

does not have to go through the whole directory structure. For this reason some systems

will transfer an entire process from the file system to swap space before starting up the

process, so that future paging all occurs from the (relatively) faster swap space.

 Some systems use demand paging directly from the file system for binary code (which

never changes and hence does not have to be stored on a page operation), and to reserve

the swap space for data segments that must be stored. This approach is used by both

Solaris and BSD Unix.

Copy-on-Write

 The idea behind a copy-on-write fork is that the pages for a parent process do not have to

be actually copied for the child until one or the other of the processes changes the page.

They can be simply shared between the two processes in the meantime, with a bit set that

the page needs to be copied if it ever gets written to. This is a reasonable approach, since

the child process usually issues an exec() system call immediately after the fork.

Fig: Before process 1 modifies page C

68

Fig: After process 1 modifies page C

 Obviously only pages that can be modified even need to be labeled as copy-on-write.

Code segments can simply be shared.

 Pages used to satisfy copy-on-write duplications are typically allocated using zero-fill-

on-demand, meaning that their previous contents are zeroed out before the copy

proceeds.

 Some systems provide an alternative to the fork() system call called a virtual memory

fork, vfork(). In this case the parent is suspended, and the child uses the parent's

memory pages. This is very fast for process creation, but requires that the child not

modify any of the shared memory pages before performing the exec() system call. (In

essence this addresses the question of which process executes first after a call to fork, the

parent or the child. With vfork, the parent is suspended, allowing the child to execute first

until it calls exec(), sharing pages with the parent in the meantime.

Page Replacement

 In order to make the most use of virtual memory, we load several processes into memory

at the same time. Since we only load the pages that are actually needed by each process at

any given time, there is room to load many more processes than if we had to load in the

entire process.

 However memory is also needed for other purposes (such as I/O buffering), and what

happens if some process suddenly decides it needs more pages and there aren't any free

frames available? There are several possible solutions to consider:

1. Adjust the memory used by I/O buffering, etc., to free up some frames for user

processes. The decision of how to allocate memory for I/O versus user processes

is a complex one, yielding different policies on different systems. (Some allocate

a fixed amount for I/O, and others let the I/O system contend for memory along

with everything else.)

2. Put the process requesting more pages into a wait queue until some free frames

become available.

3. Swap some process out of memory completely, freeing up its page frames.

69

4. Find some page in memory that isn't being used right now, and swap that page

only out to disk, freeing up a frame that can be allocated to the process requesting

it. This is known as page replacement, and is the most common solution. There

are many different algorithms for page replacement, which is the subject of the

remainder of this section.

\

Fig: Ned for page replacement

Basic Page Replacement

 The previously discussed page-fault processing assumed that there would be free frames

available on the free-frame list. Now the page-fault handling must be modified to free up

a frame if necessary, as follows:

1. Find the location of the desired page on the disk, either in swap space or in the file

system.

2. Find a free frame:

a) If there is a free frame, use it.

b) If there is no free frame, use a page-replacement algorithm to select an

existing frame to be replaced, known as the victim frame.

c) Write the victim frame to disk. Change all related page tables to indicate

that this page is no longer in memory.

3. Read in the desired page and store it in the frame. Adjust all related page and

frame tables to indicate the change.

4. Restart the process that was waiting for this page.

70

Fig: Page replacement.

 Note that step 3c adds an extra disk write to the page-fault handling, effectively doubling

the time required to process a page fault. This can be alleviated somewhat by assigning a

modify bit, or dirty bit to each page, indicating whether or not it has been changed since

it was last loaded in from disk. If the dirty bit has not been set, then the page is

unchanged, and does not need to be written out to disk. Otherwise the page write is

required. It should come as no surprise that many page replacement strategies specifically

look for pages that do not have their dirty bit set, and preferentially select clean pages as

victim pages. It should also be obvious that unmodifiable code pages never get their dirty

bits set.

 There are two major requirements to implement a successful demand paging system. We

must develop a frame-allocation algorithm and a page-replacement algorithm. The former

centers around how many frames are allocated to each process (and to other needs), and

the latter deals with how to select a page for replacement when there are no free frames

available.

 The overall goal in selecting and tuning these algorithms is to generate the fewest number

of overall page faults. Because disk access is so slow relative to memory access, even

slight improvements to these algorithms can yield large improvements in overall system

performance.

 Algorithms are evaluated using a given string of memory accesses known as a reference

string, which can be generated in one of (at least) three common ways:

1. Randomly generated, either evenly distributed or with some distribution curve

based on observed system behavior. This is the fastest and easiest approach, but

may not reflect real performance well, as it ignores locality of reference.

71

2. Specifically designed sequences. These are useful for illustrating the properties of

comparative algorithms in published papers and textbooks, (and also for

homework and exam problems. :-))

3. Recorded memory references from a live system. This may be the best approach,

but the amount of data collected can be enormous, on the order of a million

addresses per second. The volume of collected data can be reduced by making

two important observations:

i. Only the page number that was accessed is relevant. The offset within that

page does not affect paging operations.

ii. Successive accesses within the same page can be treated as a single page

request, because all requests after the first are guaranteed to be page hits. (

Since there are no intervening requests for other pages that could remove

this page from the page table.)

Example: So for example, if pages were of size 100 bytes, then the

sequence of address requests (0100, 0432, 0101, 0612, 0634, 0688, 0132,

0038, 0420) would reduce to page requests (1, 4, 1, 6, 1, 0, 4)

 As the number of available frames increases, the number of page faults should decrease,

as shown in below Figure:

Fig: Graph of page faults versus number of frames

FIFO Page Replacement

 A simple and obvious page replacement strategy is FIFO, i.e. first-in-first-out.

 As new pages are brought in, they are added to the tail of a queue, and the page at the

head of the queue is the next victim. In the following example, 20 page requests result in

15 page faults:

72

Fig: FIFO page-replacement algorithm

 Although FIFO is simple and easy, it is not always optimal, or even efficient.

 An interesting effect that can occur with FIFO is Belady's anomaly, in which increasing

the number of frames available can actually increase the number of page faults that

occur! Consider, for example, the following chart based on the page sequence (1, 2, 3, 4,

1, 2, 5, 1, 2, 3, 4, 5) and a varying number of available frames. Obviously the maximum

number of faults is 12 (every request generates a fault), and the minimum number is 5 (

each page loaded only once), but in between there are some interesting results:

Fig: Page-fault curve for FIFO replacement on a reference string

Optimal Page Replacement

 The discovery of Belady's anomaly lead to the search for an optimal page-replacement

algorithm, which is simply that which yields the lowest of all possible page-faults, and

which does not suffer from Belady's anomaly.

 Such an algorithm does exist, and is called OPT or MIN. This algorithm is simply

"Replace the page that will not be used for the longest time in the future."

 For example, Figure 9.14 shows that by applying OPT to the same reference string used

for the FIFO example, the minimum number of possible page faults is 9. Since 6 of the

page-faults are unavoidable (the first reference to each new page), FIFO can be shown

to require 3 times as many (extra) page faults as the optimal algorithm. (Note: The book

73

claims that only the first three page faults are required by all algorithms, indicating that

FIFO is only twice as bad as OPT.)

 Unfortunately OPT cannot be implemented in practice, because it requires foretelling the

future, but it makes a nice benchmark for the comparison and evaluation of real proposed

new algorithms.

 In practice most page-replacement algorithms try to approximate OPT by predicting (

estimating) in one fashion or another what page will not be used for the longest period of

time. The basis of FIFO is the prediction that the page that was brought in the longest

time ago is the one that will not be needed again for the longest future time, but as we

shall see, there are many other prediction methods, all striving to match the performance

of OPT.

Fig: Optimal page-replacement algorithm

 LRU Page Replacement

 The prediction behind LRU, the Least Recently Used, algorithm is that the page that has

not been used in the longest time is the one that will not be used again in the near future. (

Note the distinction between FIFO and LRU: The former looks at the oldest load time,

and the latter looks at the oldest use time.)

 Some view LRU as analogous to OPT, except looking backwards in time instead of

forwards. (OPT has the interesting property that for any reference string S and its reverse

R, OPT will generate the same number of page faults for S and for R. It turns out that

LRU has this same property.)

 Below figure illustrates LRU for our sample string, yielding 12 page faults, (as compared

to 15 for FIFO and 9 for OPT.)

74

Fig: LRU page-replacement algorithm

 LRU is considered a good replacement policy, and is often used. The problem is how

exactly to implement it. There are two simple approaches commonly used:

1. Counters. Every memory access increments a counter, and the current value of

this counter is stored in the page table entry for that page. Then finding the LRU

page involves simple searching the table for the page with the smallest counter

value. Note that overflowing of the counter must be considered.

2. Stack. Another approach is to use a stack, and whenever a page is accessed, pull

that page from the middle of the stack and place it on the top. The LRU page will

always be at the bottom of the stack. Because this requires removing objects from

the middle of the stack, a doubly linked list is the recommended data structure.

 Note that both implementations of LRU require hardware support, either for incrementing

the counter or for managing the stack, as these operations must be performed for every

memory access.

 Neither LRU or OPT exhibit Belady's anomaly. Both belong to a class of page-

replacement algorithms called stack algorithms, which can never exhibit Belady's

anomaly. A stack algorithm is one in which the pages kept in memory for a frame set of

size N will always be a subset of the pages kept for a frame size of N + 1. In the case of

LRU, (and particularly the stack implementation thereof), the top N pages of the stack

will be the same for all frame set sizes of N or anything larger.

Fig: Use of a stack to record the most recent page references

75

LRU-Approximation Page Replacement

 Unfortunately full implementation of LRU requires hardware support, and few systems

provide the full hardware support necessary.

 However many systems offer some degree of HW support, enough to approximate LRU

fairly well. (In the absence of ANY hardware support, FIFO might be the best available

choice.)

 In particular, many systems provide a reference bit for every entry in a page table, which

is set anytime that page is accessed. Initially all bits are set to zero, and they can also all

be cleared at any time. One bit of precision is enough to distinguish pages that have been

accessed since the last clear from those that have not, but does not provide any finer grain

of detail.

Additional-Reference-Bits Algorithm

 Finer grain is possible by storing the most recent 8 reference bits for each page in an 8-bit

byte in the page table entry, which is interpreted as an unsigned int.

o At periodic intervals (clock interrupts), the OS takes over, and right-shifts each

of the reference bytes by one bit.

o The high-order (leftmost) bit is then filled in with the current value of the

reference bit, and the reference bits are cleared.

o At any given time, the page with the smallest value for the reference byte is the

LRU page.

 Obviously the specific number of bits used and the frequency with which the reference

byte is updated are adjustable, and are tuned to give the fastest performance on a given

hardware platform.

Second-Chance Algorithm

 The second chance algorithm is essentially a FIFO, except the reference bit is used to

give pages a second chance at staying in the page table.

o When a page must be replaced, the page table is scanned in a FIFO (circular

queue) manner.

o If a page is found with its reference bit not set, then that page is selected as the

next victim.

o If, however, the next page in the FIFO does have its reference bit set, then it is

given a second chance:

 The reference bit is cleared, and the FIFO search continues.

 If some other page is found that did not have its reference bit set, then that

page will be selected as the victim, and this page (the one being given the

second chance) will be allowed to stay in the page table.

 If , however, there are no other pages that do not have their reference bit

set, then this page will be selected as the victim when the FIFO search

circles back around to this page on the second pass.

76

 If all reference bits in the table are set, then second chance degrades to FIFO, but also

requires a complete search of the table for every page-replacement.

 As long as there are some pages whose reference bits are not set, then any page

referenced frequently enough gets to stay in the page table indefinitely.

 This algorithm is also known as the clock algorithm, from the hands of the clock moving

around the circular queue.

Fig: Second-chance (clock) page-replacement algorithm

Enhanced Second-Chance Algorithm

 The enhanced second chance algorithm looks at the reference bit and the modify bit (

dirty bit) as an ordered page, and classifies pages into one of four classes:

1. (0, 0) - Neither recently used nor modified.

2. (0, 1) - Not recently used, but modified.

3. (1, 0) - Recently used, but clean.

4. (1, 1) - Recently used and modified.

 This algorithm searches the page table in a circular fashion (in as many as four passes),

looking for the first page it can find in the lowest numbered category. I.e. it first makes a

pass looking for a (0, 0), and then if it can't find one, it makes another pass looking for a

(0, 1), etc.

 The main difference between this algorithm and the previous one is the preference for

replacing clean pages if possible.

Counting-Based Page Replacement

 There are several algorithms based on counting the number of references that have been

made to a given page, such as:

77

o Least Frequently Used, LFU: Replace the page with the lowest reference count. A

problem can occur if a page is used frequently initially and then not used any

more, as the reference count remains high. A solution to this problem is to right-

shift the counters periodically, yielding a time-decaying average reference count.

o Most Frequently Used, MFU: Replace the page with the highest reference count.

The logic behind this idea is that pages that have already been referenced a lot

have been in the system a long time, and we are probably done with them,

whereas pages referenced only a few times have only recently been loaded, and

we still need them.

 In general counting-based algorithms are not commonly used, as their implementation is

expensive and they do not approximate OPT well.

Page-Buffering Algorithms

There are a number of page-buffering algorithms that can be used in conjunction with the afore-

mentioned algorithms, to improve overall performance and sometimes make up for inherent

weaknesses in the hardware and/or the underlying page-replacement algorithms:

 Maintain a certain minimum number of free frames at all times. When a page-fault

occurs, go ahead and allocate one of the free frames from the free list first, to get the

requesting process up and running again as quickly as possible, and then select a victim

page to write to disk and free up a frame as a second step.

 Keep a list of modified pages, and when the I/O system is otherwise idle, have it write

these pages out to disk, and then clear the modify bits, thereby increasing the chance of

finding a "clean" page for the next potential victim.

 Keep a pool of free frames, but remember what page was in it before it was made free.

Since the data in the page is not actually cleared out when the page is freed, it can be

made an active page again without having to load in any new data from disk. This is

useful when an algorithm mistakenly replaces a page that in fact is needed again soon.

Applications and Page Replacement

 Some applications (most notably database programs) understand their data accessing

and caching needs better than the general-purpose OS, and should therefore be given

reign to do their own memory management.

 Sometimes such programs are given a raw disk partition to work with, containing raw

data blocks and no file system structure. It is then up to the application to use this disk

partition as extended memory or for whatever other reasons it sees fit.

Allocation of Frames

We said earlier that there were two important tasks in virtual memory management: a page-

replacement strategy and a frame-allocation strategy. This section covers the second part of that

pair.

78

Minimum Number of Frames

 The absolute minimum number of frames that a process must be allocated is dependent

on system architecture, and corresponds to the worst-case scenario of the number of

pages that could be touched by a single (machine) instruction.

 If an instruction (and its operands) spans a page boundary, then multiple pages could be

needed just for the instruction fetch.

 Memory references in an instruction touch more pages, and if those memory locations

can span page boundaries, then multiple pages could be needed for operand access also.

 The worst case involves indirect addressing, particularly where multiple levels of indirect

addressing are allowed. Left unchecked, a pointer to a pointer to a pointer to a pointer to

a . . . could theoretically touch every page in the virtual address space in a single machine

instruction, requiring every virtual page be loaded into physical memory simultaneously.

For this reason architectures place a limit (say 16) on the number of levels of indirection

allowed in an instruction, which is enforced with a counter initialized to the limit and

decremented with every level of indirection in an instruction - If the counter reaches zero,

then an "excessive indirection" trap occurs. This example would still require a minimum

frame allocation of 17 per process.

Allocation Algorithms

 Equal Allocation - If there are m frames available and n processes to share them, each

process gets m / n frames, and the leftovers are kept in a free-frame buffer pool.

 Proportional Allocation - Allocate the frames proportionally to the size of the process,

relative to the total size of all processes. So if the size of process i is S_i, and S is the sum

of all S_i, then the allocation for process P_i is a_i = m * S_i / S.

 Variations on proportional allocation could consider priority of process rather than just

their size.

 Obviously all allocations fluctuate over time as the number of available free frames, m,

fluctuates, and all are also subject to the constraints of minimum allocation. (If the

minimum allocations cannot be met, then processes must either be swapped out or not

allowed to start until more free frames become available.)

Global versus Local Allocation

 One big question is whether frame allocation (page replacement) occurs on a local or

global level.

 With local replacement, the number of pages allocated to a process is fixed, and page

replacement occurs only amongst the pages allocated to this process.

 With global replacement, any page may be a potential victim, whether it currently

belongs to the process seeking a free frame or not.

 Local page replacement allows processes to better control their own page fault rates, and

leads to more consistent performance of a given process over different system load levels.

79

 Global page replacement is overall more efficient, and is the more commonly used

approach.

Non-Uniform Memory Access

 The above arguments all assume that all memory is equivalent, or at least has equivalent

access times.

 This may not be the case in multiple-processor systems, especially where each CPU is

physically located on a separate circuit board which also holds some portion of the

overall system memory.

 In these latter systems, CPUs can access memory that is physically located on the same

board much faster than the memory on the other boards.

 The basic solution is akin to processor affinity - At the same time that we try to schedule

processes on the same CPU to minimize cache misses, we also try to allocate memory for

those processes on the same boards, to minimize access times.

 The presence of threads complicates the picture, especially when the threads get loaded

onto different processors.

 Solaris uses an lgroup as a solution, in a hierarchical fashion based on relative latency.

For example, all processors and RAM on a single board would probably be in the same

lgroup. Memory assignments are made within the same lgroup if possible, or to the next

nearest lgroup otherwise. (Where "nearest" is defined as having the lowest access time.)

Thrashing

 If a process cannot maintain its minimum required number of frames, then it must be

swapped out, freeing up frames for other processes. This is an intermediate level of CPU

scheduling.

 But what about a process that can keep its minimum, but cannot keep all of the frames

that it is currently using on a regular basis? In this case it is forced to page out pages that

it will need again in the very near future, leading to large numbers of page faults.

 A process that is spending more time paging than executing is said to be thrashing.

Cause of Thrashing

 Early process scheduling schemes would control the level of multiprogramming allowed

based on CPU utilization, adding in more processes when CPU utilization was low.

 The problem is that when memory filled up and processes started spending lots of time

waiting for their pages to page in, then CPU utilization would lower, causing the schedule

to add in even more processes and exacerbating the problem! Eventually the system

would essentially grind to a halt.

 Local page replacement policies can prevent one thrashing process from taking pages

away from other processes, but it still tends to clog up the I/O queue, thereby slowing

80

down any other process that needs to do even a little bit of paging (or any other I/O for

that matter.)

Fig: Thrashing

 To prevent thrashing we must provide processes with as many frames as they really need

"right now", but how do we know what that is?

 The locality model notes that processes typically access memory references in a given

locality, making lots of references to the same general area of memory before moving

periodically to a new locality, as shown in Figure 9.19 below. If we could just keep as

many frames as are involved in the current locality, then page faulting would occur

primarily on switches from one locality to another. (E.g. when one function exits and

another is called.)

Working-Set Model

The working set model is based on the concept of locality, and defines a working set window, of

length delta. Whatever pages are included in the most recent delta page references are said to be

in the processes working set window, and comprise its current working set, as illustrated in

below Figure:

Fig: Working-set model

81

 The selection of delta is critical to the success of the working set model - If it is too small

then it does not encompass all of the pages of the current locality, and if it is too large,

then it encompasses pages that are no longer being frequently accessed.

 The total demand, D, is the sum of the sizes of the working sets for all processes. If D

exceeds the total number of available frames, then at least one process is thrashing,

because there are not enough frames available to satisfy its minimum working set. If D is

significantly less than the currently available frames, then additional processes can be

launched.

 The hard part of the working-set model is keeping track of what pages are in the current

working set, since every reference adds one to the set and removes one older page. An

approximation can be made using reference bits and a timer that goes off after a set

interval of memory references:

o For example, suppose that we set the timer to go off after every 5000

references (by any process), and we can store two additional historical

reference bits in addition to the current reference bit.

o Every time the timer goes off, the current reference bit is copied to one of the two

historical bits, and then cleared.

o If any of the three bits is set, then that page was referenced within the last 15,000

references, and is considered to be in that processes reference set.

o Finer resolution can be achieved with more historical bits and a more frequent

timer, at the expense of greater overhead.

Page-Fault Frequency

 A more direct approach is to recognize that what we really want to control is the page-

fault rate, and to allocate frames based on this directly measurable value. If the page-fault

rate exceeds a certain upper bound then that process needs more frames, and if it is below

a given lower bound, then it can afford to give up some of its frames to other processes.

 (I suppose a page-replacement strategy could be devised that would select victim frames

based on the process with the lowest current page-fault frequency.)

Fig: Page-fault frequency

82

Memory-mapped files

Rather than accessing data files directly via the file system with every file access, data files can

be paged into memory the same as process files, resulting in much faster accesses (except of

course when page-faults occur.) This is known as memory-mapping a file.

Basic Mechanism

 Basically a file is mapped to an address range within a process's virtual address space,

and then paged in as needed using the ordinary demand paging system.

 Note that file writes are made to the memory page frames, and are not immediately

written out to disk. (This is the purpose of the "flush()" system call, which may also be

needed for stdout in some cases. See the time killer program for an example of this.)

 This is also why it is important to "close()" a file when one is done writing to it - So that

the data can be safely flushed out to disk and so that the memory frames can be freed up

for other purposes.

 Some systems provide special system calls to memory map files and use direct disk

access otherwise. Other systems map the file to process address space if the special

system calls are used and map the file to kernel address space otherwise, but do memory

mapping in either case.

 File sharing is made possible by mapping the same file to the address space of more than

one process, as shown in below Figure. Copy-on-write is supported, and mutual

exclusion techniques may be needed to avoid synchronization problems.

Fig: Memory-mapped files.

83

 Shared memory can be implemented via shared memory-mapped files (Windows), or it

can be implemented through a separate process (Linux, UNIX.)

Shared Memory in the Win32 API

 Windows implements shared memory using shared memory-mapped files, involving

three basic steps:

1. Create a file, producing a HANDLE to the new file.

2. Name the file as a shared object, producing a HANDLE to the shared object.

3. Map the shared object to virtual memory address space, returning its base address

as a void pointer (LPVOID).

This is illustrated in below Figure

Fig: Shared memory in Windows using memory-mapped I/O

Memory-Mapped I/O

 All access to devices is done by writing into (or reading from) the device's registers.

Normally this is done via special I/O instructions.

 For certain devices it makes sense to simply map the device's registers to addresses in the

process's virtual address space, making device I/O as fast and simple as any other

memory access. Video controller cards are a classic example of this.

 Serial and parallel devices can also use memory mapped I/O, mapping the device

registers to specific memory addresses known as I/O Ports, e.g. 0xF8. Transferring a

series of bytes must be done one at a time, moving only as fast as the I/O device is

prepared to process the data, through one of two mechanisms:

o Programmed I/O (PIO), also known as polling. The CPU periodically checks

the control bit on the device, to see if it is ready to handle another byte of data.

o Interrupt Driven. The device generates an interrupt when it either has another

byte of data to deliver or is ready to receive another byte.

84

Allocating Kernel Memory

 Previous discussions have centered on process memory, which can be conveniently

broken up into page-sized chunks, and the only fragmentation that occurs is the average

half-page lost to internal fragmentation for each process (segment.)

 There is also additional memory allocated to the kernel, however, which cannot be so

easily paged. Some of it is used for I/O buffering and direct access by devices, example,

and must therefore be contiguous and not affected by paging. Other memory is used for

internal kernel data structures of various sizes, and since kernel memory is often locked (

restricted from being ever swapped out), management of this resource must be done

carefully to avoid internal fragmentation or other waste. (I.e. you would like the kernel to

consume as little memory as possible, leaving as much as possible for user processes.)

Accordingly there are several classic algorithms in place for allocating kernel memory

structures.

Buddy System

 The Buddy System allocates memory using a power of two allocator.

 Under this scheme, memory is always allocated as a power of 2 (4K, 8K, 16K, etc),

rounding up to the next nearest power of two if necessary.

 If a block of the correct size is not currently available, then one is formed by splitting the

next larger block in two, forming two matched buddies. (And if that larger size is not

available, then the next largest available size is split, and so on.)

 One nice feature of the buddy system is that if the address of a block is exclusively ORed

with the size of the block, the resulting address is the address of the buddy of the same

size, which allows for fast and easy coalescing of free blocks back into larger blocks.

o Free lists are maintained for every size block.

o If the necessary block size is not available upon request, a free block from the

next largest size is split into two buddies of the desired size. (Recursively

splitting larger size blocks if necessary.)

o When a block is freed, its buddy's address is calculated, and the free list for that

size block is checked to see if the buddy is also free. If it is, then the two buddies

are coalesced into one larger free block, and the process is repeated with

successively larger free lists.

o See the (annotated) Figure below for an example.

85

Fig: Buddy System Allocation

Slab Allocation

 Slab Allocation allocates memory to the kernel in chunks called slabs, consisting of one

or more contiguous pages. The kernel then creates separate caches for each type of data

structure it might need from one or more slabs. Initially the caches are marked empty,

and are marked full as they are used.

 New requests for space in the cache is first granted from empty or partially empty slabs,

and if all slabs are full, then additional slabs are allocated.

 (This essentially amounts to allocating space for arrays of structures, in large chunks

suitable to the size of the structure being stored. For example if a particular structure were

512 bytes long, space for them would be allocated in groups of 8 using 4K pages. If the

structure were 3K, then space for 4 of them could be allocated at one time in a slab of

12K using three 4K pages.

 Benefits of slab allocation include lack of internal fragmentation and fast allocation of

space for individual structures

 Solaris uses slab allocation for the kernel and also for certain user-mode memory

allocations. Linux used the buddy system prior to 2.2 and switched to slab allocation

since then.

Fig: Slab Allocation

86

Other Considerations

Prepaging

 The basic idea behind prepaging is to predict the pages that will be needed in the near

future, and page them in before they are actually requested.

 If a process was swapped out and we know what its working set was at the time, then

when we swap it back in we can go ahead and page back in the entire working set, before

the page faults actually occur.

 With small (data) files we can go ahead and prepage all of the pages at one time.

 Prepaging can be of benefit if the prediction is good and the pages are needed eventually,

but slows the system down if the prediction is wrong.

Page Size

 There are quite a few trade-offs of small versus large page sizes:

 Small pages waste less memory due to internal fragmentation.

 Large pages require smaller page tables.

 For disk access, the latency and seek times greatly outweigh the actual data transfer

times. This makes it much faster to transfer one large page of data than two or more

smaller pages containing the same amount of data.

 Smaller pages match locality better, because we are not bringing in data that is not really

needed.

 Small pages generate more page faults, with attending overhead.

 The physical hardware may also play a part in determining page size.

 It is hard to determine an "optimal" page size for any given system. Current norms range

from 4K to 4M, and tend towards larger page sizes as time passes.

TLB Reach

 TLB Reach is defined as the amount of memory that can be reached by the pages listed in

the TLB.

 Ideally the working set would fit within the reach of the TLB.

 Increasing the size of the TLB is an obvious way of increasing TLB reach, but TLB

memory is very expensive and also draws lots of power.

 Increasing page sizes increases TLB reach, but also leads to increased fragmentation loss.

 Some systems provide multiple size pages to increase TLB reach while keeping

fragmentation low.

 Multiple page sizes requires that the TLB be managed by software, not hardware.

Inverted Page Tables

87

 Inverted page tables store one entry for each frame instead of one entry for each virtual

page. This reduces the memory requirement for the page table, but loses the information

needed to implement virtual memory paging.

 A solution is to keep a separate page table for each process, for virtual memory

management purposes. These are kept on disk, and only paged in when a page fault

occurs. (I.e. they are not referenced with every memory access the way a traditional page

table would be.)

Program Structure

 Consider a pair of nested loops to access every element in a 1024 x 1024 two-

dimensional array of 32-bit ints.

 Arrays in C are stored in row-major order, which means that each row of the array would

occupy a page of memory.

 If the loops are nested so that the outer loop increments the row and the inner loop

increments the column, then an entire row can be processed before the next page fault,

yielding 1024 page faults total.

 On the other hand, if the loops are nested the other way, so that the program worked

down the columns instead of across the rows, then every access would be to a different

page, yielding a new page fault for each access, or over a million page faults all together.

 Be aware that different languages store their arrays differently. FORTRAN for example

stores arrays in column-major format instead of row-major. This means that blind

translation of code from one language to another may turn a fast program into a very slow

one, strictly because of the extra page faults.

I/O Interlock and Page Locking

There are several occasions when it may be desirable to lock pages in memory, and not let them

get paged out:

 Certain kernel operations cannot tolerate having their pages swapped out.

 If an I/O controller is doing direct-memory access, it would be wrong to change pages in

the middle of the I/O operation.

 In a priority based scheduling system, low priority jobs may need to wait quite a while

before getting their turn on the CPU, and there is a danger of their pages being paged out

before they get a chance to use them even once after paging them in. In this situation

pages may be locked when they are paged in, until the process that requested them gets at

least one turn in the CPU.

88

Figure :The reason why frames used for I/O must be in memory.

Operating-System Examples (Optional)

Windows

 Windows uses demand paging with clustering, meaning they page in multiple pages

whenever a page fault occurs.

 The working set minimum and maximum are normally set at 50 and 345 pages

respectively. (Maximums can be exceeded in rare circumstances.)

 Free pages are maintained on a free list, with a minimum threshold indicating when there

are enough free frames available.

 If a page fault occurs and the process is below their maximum, then additional pages are

allocated. Otherwise some pages from this process must be replaced, using a local page

replacement algorithm.

 If the amount of free frames falls below the allowable threshold, then working set

trimming occurs, taking frames away from any processes which are above their

minimum, until all are at their minimums. Then additional frames can be allocated to

processes that need them.

 The algorithm for selecting victim frames depends on the type of processor:

 On single processor 80x86 systems, a variation of the clock (second chance) algorithm

is used.

 On Alpha and multiprocessor systems, clearing the reference bits may require

invalidating entries in the TLB on other processors, which is an expensive operation. In

this case Windows uses a variation of FIFO.

89

Solaris

 Solaris maintains a list of free pages, and allocates one to a faulting thread whenever a

fault occurs. It is therefore imperative that a minimum amount of free memory be kept on

hand at all times.

 Solaris has a parameter, lotsfree, usually set at 1/64 of total physical memory. Solaris

checks 4 times per second to see if the free memory falls below this threshold, and if it

does, then the page out process is started.

 Pageout uses a variation of the clock (second chance) algorithm, with two hands rotating

around through the frame table. The first hand clears the reference bits, and the second

hand comes by afterwards and checks them. Any frame whose reference bit has not been

reset before the second hand gets there gets paged out.

 The Pageout method is adjustable by the distance between the two hands, (the handspan

), and the speed at which the hands move. For example, if the hands each check 100

frames per second, and the handspan is 1000 frames, then there would be a 10 second

interval between the time when the leading hand clears the reference bits and the time

when the trailing hand checks them.

 The speed of the hands is usually adjusted according to the amount of free memory, as

shown below. Slowscan is usually set at 100 pages per second, and fastscan is usually set

at the smaller of 1/2 of the total physical pages per second and 8192 pages per second.

Fig: Solaris Page Scanner

 Solaris also maintains a cache of pages that have been reclaimed but which have not yet

been overwritten, as opposed to the free list which only holds pages whose current

contents are invalid. If one of the pages from the cache is needed before it gets moved to

the free list, then it can be quickly recovered.

 Normally page out runs 4 times per second to check if memory has fallen below lotsfree.

However if it falls below desfree, then page out will run at 100 times per second in an

90

attempt to keep at least desfree pages free. If it is unable to do this for a 30-second

average, then Solaris begins swapping processes, starting preferably with processes that

have been idle for a long time.

 If free memory falls below minfree, then page out runs with every page fault.

 Recent releases of Solaris have enhanced the virtual memory management system,

including recognizing pages from shared libraries, and protecting them from being paged

out.

3.3 DEAD LOCKS

3.3.1. System Model

● For the purposes of deadlock discussion, a system can be modeled as a collection of limited
resources, which can be partitioned into different categories, to be allocated to a number of
processes, each having different needs.

● Resource categories may include memory, printers, CPUs, open files, tape drives, CD-ROMS,
etc.

● By definition, all the resources within a category are equivalent, and a request of this category can
be equally satisfied by any one of the resources in that category. If this is not the case (i.e. if
there is some difference between the resources within a category), then that category needs to be
further divided into separate categories. For example, "printers" may need to be separated into
"laser printers" and "color inkjet printers".

● Some categories may have a single resource.
● In normal operation a process must request a resource before using it, and release it when it is

done, in the following sequence:
1. Request - If the request cannot be immediately granted, then the process must wait until

the resource(s) it needs become available. Example: system calls open(), malloc(),
new(), and request().

2. Use - The process uses the resource.

Example: prints to the printer or reads from the file.

3. Release - The process relinquishes the resource. so that it becomes available for other
processes.

Example: close(), free(), delete(), and release().

● For all kernel-managed resources, the kernel keeps track of what resources are free and which are
allocated, to which process they are allocated, and a queue of processes waiting for this resource
to become available. Application-managed resources can be controlled using mutexes or wait()
and signal() calls, (i.e. binary or counting semaphores.)

● A set of processes is deadlocked when every process in the set is waiting for a resource that is
currently allocated to another process in the set (and which can only be released when that other
waiting process makes progress.)

3.3.2. Deadlock Characterization

Necessary Conditions:
There are four conditions that are necessary to achieve deadlock:

91

Mutual Exclusion - At least one resource must be held in a non-sharable mode; If any other process

requests this resource, then that process must wait for the resource to be released.

Hold and Wait - A process must be simultaneously holding at least one resource and waiting for at least

one resource that is currently being held by some other process.

No preemption - Once a process is holding a resource (i.e. once its request has been granted), then that

resource cannot be taken away from that process until the process voluntarily releases it.

Circular Wait - A set of processes { P0, P1, P2, . . ., PN } must exist such that every P[i] is waiting for

P[(i + 1) % (N + 1)]. (Note that this condition implies the hold-and-wait condition, but it is easier to

deal with the conditions if the four are considered separately.)

Resource-Allocation Graph

In some cases deadlocks can be understood more clearly through the use of Resource-Allocation

Graphs, having the following properties:

 *A set of resource categories, { R1, R2, R3, . . ., RN }, which appear as square nodes on the

graph. Dots inside the resource nodes indicate specific instances of the resource. (E.g. two dots might

represent two laser printers.)

 *A set of processes, { P1, P2, P3, . . ., PN }

 *Request Edges - A set of directed arcs from Pi to Rj, indicating that process Pi has requested Rj,

and is currently waiting for that resource to become available.

 *Assignment Edges - A set of directed arcs from Rj to Pi indicating that resource Rj has been

allocated to process Pi, and that Pi is currently holding resource Rj.

Note that a request edge can be converted into an assignment edge by reversing the direction of the arc

when the request is granted. (However note also that request edges point to the category box, whereas

assignment edges emanate from a particular instance dot within the box.)

For example:

92

*If a resource-allocation graph contains no cycles, then the system is not deadlocked. (When looking for
cycles, remember that these are directed graphs.) See the example in Figure 7.2 above.

*If a resource-allocation graph does contain cycles AND each resource category contains only a single
instance, then a deadlock exists.

*If a resource category contains more than one instance, then the presence of a cycle in the resource-
allocation graph indicates the possibility of a deadlock, but does not guarantee one. Consider, for

example, Figures 7.3 and 7.4 below:

Fig: Resource Allocation Graph with cycle

3.3.3. Methods for Handling Deadlocks

Generally speaking there are three ways of handling deadlocks:

Deadlock prevention or avoidance - Do not allow the system to get into a deadlocked state.

Deadlock detection and recovery - Abort a process or preempt some resources when deadlocks are

detected.

Ignore the problem all together - If deadlocks only occur once a year or so, it may be better to simply

let them happen and reboot as necessary than to incur the constant overhead and system performance

penalties associated with deadlock prevention or detection. This is the approach that both Windows and

UNIX take.

In order to avoid deadlocks, the system must have additional information about all processes. In

particular, the system must know what resources a process will or may request in the future. (Ranging

from a simple worst-case maximum to a complete resource request and release plan for each process,

depending on the particular algorithm.)

 Deadlock detection is fairly straightforward, but deadlock recovery requires either aborting

processes or preempting resources, neither of which is an attractive alternative.

If deadlocks are neither prevented nor detected, then when a deadlock occurs the system will

gradually slow down, as more and more processes become stuck waiting for resources currently held by

93

the deadlock and by other waiting processes. Unfortunately this slowdown can be indistinguishable from

a general system slowdown when a real-time process has heavy computing needs.

3.3.4. Deadlock Prevention

Deadlocks can be prevented by preventing at least one of the four required conditions:

Mutual Exclusion

Shared resources such as read-only files do not lead to deadlocks.

Unfortunately some resources, such as printers and tape drives, require exclusive access by a single

process.

Hold and Wait
To prevent this condition processes must be prevented from holding one or more resources while

simultaneously waiting for one or more others. There are several possibilities for this:

i. Require that all processes request all resources at one time. This can be wasteful of system

resources if a process needs one resource early in its execution and doesn't need some other

resource until much later.

ii. Require that processes holding resources must release them before requesting new resources, and

then re-acquire the released resources along with the new ones in a single new request. This

can be a problem if a process has partially completed an operation using a resource and then

fails to get it re-allocated after releasing it.

iii. Either of the methods described above can lead to starvation if a process requires one or more

popular resources.

No Preemption

Preemption of process resource allocations can prevent this condition of deadlocks, when it is possible.

i. One approach is that if a process is forced to wait when requesting a new resource, then all other

resources previously held by this process are implicitly released, (preempted), forcing this process to re-

acquire the old resources along with the new resources in a single request, similar to the previous

discussion.

ii. Another approach is that when a resource is requested and not available, then the system looks to see

what other processes currently have those resources and are themselves blocked waiting for some other

resource. If such a process is found, then some of their resources may get preempted and added to the list

of resources for which the process is waiting.

iii. Either of these approaches may be applicable for resources whose states are easily saved and restored,

such as registers and memory, but are generally not applicable to other devices such as printers and tape

drives.

Circular Wait
i. One way to avoid circular wait is to number all resources, and to require that processes request

resources only in strictly increasing (or decreasing) order.

ii. In other words, in order to request resource Rj, a process must first release all Ri such that i >= j.

iii. One big challenge in this scheme is determining the relative ordering of the different resources

Deadlock Avoidance

The general idea behind deadlock avoidance is to prevent deadlocks from ever happening, by preventing

at least one of the aforementioned conditions.

This requires more information about each process, AND tends to lead to low device utilization. (I.e. it is

94

a conservative approach.)

In some algorithms the scheduler only needs to know the maximum number of each resource that a

process might potentially use. In more complex algorithms the scheduler can also take advantage of the

schedule of exactly what resources may be needed in what order.

When a scheduler sees that starting a process or granting resource requests may lead to future deadlocks,

then that process is just not started or the request is not granted.

A resource allocation state is defined by the number of available and allocated resources, and the

maximum requirements of all processes in the system.

Safe State

i. A state is safe if the system can allocate all resources requested by all processes (up to their stated

maximums) without entering a deadlock state.

ii. More formally, a state is safe if there exists a safe sequence of processes { P0, P1, P2, ..., PN } such

that all of the resource requests for Pi can be granted using the resources currently allocated to Pi and all

processes Pj where j < i. (I.e. if all the processes prior to Pi finish and free up their resources, then Pi will

be able to finish also, using the resources that they have freed up.)

iii. If a safe sequence does not exist, then the system is in an unsafe state, which MAY lead to deadlock. (

All safe states are deadlock free, but not all unsafe states lead to deadlocks.)

 Fig: Safe, unsafe, and deadlocked state spaces.

For example, consider a system with 12 tape drives, allocated as follows. Is this a safe state? What is the

safe sequence?

Maximum Needs Current Allocation

P0 10 5
P1 4 2
P2 9 2

95

 i: What happens to the above table if process P2 requests and is granted one more tape drive?

ii. Key to the safe state approach is that when a request is made for resources, the request is granted only

if the resulting allocation state is a safe one.

Resource-Allocation Graph Algorithm
i. If resource categories have only single instances of their resources, then deadlock states can be detected

by cycles in the resource-allocation graphs.

ii. In this case, unsafe states can be recognized and avoided by augmenting the resource-allocation graph

with claim edges, noted by dashed lines, which point from a process to a resource that it may request in

the future.

iii. In order for this technique to work, all claim edges must be added to the graph for any particular

process before that process is allowed to request any resources. (Alternatively, processes may only make

requests for resources for which they have already established claim edges, and claim edges cannot be

added to any process that is currently holding resources.)

iv. When a process makes a request, the claim edge Pi->Rj is converted to a request edge. Similarly when

a resource is released, the assignment reverts back to a claim edge.

v. This approach works by denying requests that would produce cycles in the resource-allocation graph,

taking claim edges into effect.

Consider for example what happens when process P2 requests resource R2:

Fig: Resource allocation graph for dead lock avoidance

The resulting resource-allocation graph would have a cycle in it, and so the request cannot be granted.

Fig: An Unsafe State in a Resource Allocation Graph

96

Banker's Algorithm
i. For resource categories that contain more than one instance the resource-allocation graph

method does not work, and more complex (and less efficient) methods must be chosen.

ii. The Banker's Algorithm gets its name because it is a method that bankers could use to assure

that when they lend out resources they will still be able to satisfy all their clients. (A banker

won't loan out a little money to start building a house unless they are assured that they will later

be able to loan out the rest of the money to finish the house.)

iii. When a process starts up, it must state in advance the maximum allocation of resources it may

request, up to the amount available on the system.

iv. When a request is made, the scheduler determines whether granting the request would leave

the system in a safe state. If not, then the process must wait until the request can be granted

safely.

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types. N

Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj

available n

Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of resource

type Rjn

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of Rjn

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.

 Initialize: Work = Available Finish [i] = false for i = 0, 1, …, n- 1

2. Find and i such that both:

(a) Finish [i] = false

(b) Needi <= Work

If no such i exists, go to step 4

3. 3. Work = Work + Allocationi

 Finish[i] = true go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

97

 Request = request vector for process Pi . If Requesti [j] = k then process Pi wants k instances of resource

type Rj

1. If Requesti <= Needi

go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim

 2. If Requesti £ Available, go to step 3. Otherwise Pi must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

lIf safe Þ the resources are allocated to Pi

 lIf unsafe Þ Pi must wait, and the old resource-allocation state is restored

An Illustrative Example

Consider the following situation:

The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria.

Example: P1 Request (1,0,2) Check that Request £ Available (that is, (1,0,2) <= (3,3,2) Þ true

98

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety requirement.

3.3.6. Deadlock Detection

i. If deadlocks are not avoided, then another approach is to detect when they have occurred and recover

somehow.

ii. In addition to the performance hit of constantly checking for deadlocks, a policy / algorithm must be in

place for recovering from deadlocks, and there is potential for lost work when processes must be aborted

or have their resources preempted.

6.1 Single Instance of Each Resource Type

 i. If each resource category has a single instance, then we can use a variation of the resource-allocation

graph known as a wait-for graph.

ii. A wait-for graph can be constructed from a resource-allocation graph by eliminating the resources and

collapsing the associated edges, as shown in the figure below.

iii. An arc from Pi to Pj in a wait-for graph indicates that process Pi is waiting for a resource that process

Pj is currently holding.

Fig: Resource Allocation Graph Fig: Corresponding Wait for Graph

99

As before, cycles in the wait-for graph indicate deadlocks.

This algorithm must maintain the wait-for graph, and periodically search it for cycles.

Several Instances of a Resource Type Available:

A vector of length m indicates the number of available resources of each type.

Allocation: An n x m matrix defines the number of resources of each type currently allocated to each

process.

Request: An n x m matrix indicates the current request of each process. If Request [ij] = k, then process

Pi is requesting k more instances of resource type. Rj .

Detection Algorithm

 1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available(b) For i = 1,2, …, n,

 if Allocationi != 0, then

Finish[i] = false;

otherwise,

 Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti <=Work

If no such i exists, go to step 4

3. 3. Work = Work + Allocationi

Finish[i] = true go to step 2

4. If Finish[i] == false, for some i, 1 <= i <=n, then the system is in deadlock state.

 Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in deadlocked

state.

Example of Detection Algorithm

Five processes P0 through P4; three resource types A (7 instances), B (2 instances), and C (6 instances)

100

Snapshot at time T0:

Now suppose that process P2 makes a request for an additional instance of type C, yielding the state

shown below. Is the system now deadlocked?

Detection-Algorithm Usage
i. When should the deadlock detection be done? Frequently, or infrequently?

The answer may depend on how frequently deadlocks are expected to occur, as well as the possible

consequences of not catching them immediately. (If deadlocks are not removed immediately when they

occur, then more and more processes can "back up" behind the deadlock, making the eventual task of

unblocking the system more difficult and possibly damaging to more processes.)

ii. There are two obvious approaches, each with trade-offs:

 1.Do deadlock detection after every resource allocation which cannot be immediately granted. This has

the advantage of detecting the deadlock right away, while the minimum number of processes are involved

in the deadlock. (One might consider that the process whose request triggered the deadlock condition is

the "cause" of the deadlock, but realistically all of the processes in the cycle are equally responsible for

the resulting deadlock.) The down side of this approach is the extensive overhead and performance hit

caused by checking for deadlocks so frequently.

 2.Do deadlock detection only when there is some clue that a deadlock may have occurred, such as when

CPU utilization reduces to 40% or some other magic number. The advantage is that deadlock detection is

done much less frequently, but the down side is that it becomes impossible to detect the processes

101

involved in the original deadlock, and so deadlock recovery can be more complicated and damaging to

more processes.

 3.(As I write this, a third alternative comes to mind: Keep a historical log of resource allocations, since

that last known time of no deadlocks. Do deadlock checks periodically (once an hour or when CPU usage

is low?), and then use the historical log to trace through and determine when the deadlock occurred and

what processes caused the initial deadlock. Unfortunately I'm not certain that breaking the original

deadlock would then free up the resulting log jam.)

7. Recovery From Deadlock

There are three basic approaches to recovery from deadlock:

 i. Inform the system operator, and allow him/her to take manual intervention.

 ii. Terminate one or more processes involved in the deadlock

 iii. Preempt resources.

Process Termination
1. Two basic approaches, both of which recover resources allocated to terminated processes:

i. Terminate all processes involved in the deadlock. This definitely solves the deadlock, but at the

expense of terminating more processes than would be absolutely necessary.

ii. Terminate processes one by one until the deadlock is broken. This is more conservative,

but requires doing deadlock detection after each step.

2. In the latter case there are many factors that can go into deciding which processes to terminate

next:

 i. Process priorities.

 ii. How long the process has been running, and how close it is to finishing.

 iii. How many and what type of resources is the process holding. (Are they easy to preempt and

restore?)

 iv. How many more resources does the process need to complete.

 v. How many processes will need to be terminated

 vi. Whether the process is interactive or batch.

Resource Preemption

When preempting resources to relieve deadlock, there are three important issues to be addressed:

Selecting a victim - Deciding which resources to preempt from which processes involves many of the

same decision criteria outlined above.

Rollback - Ideally one would like to roll back a preempted process to a safe state prior to the point at

which that resource was originally allocated to the process. Unfortunately it can be difficult or

impossible to determine what such a safe state is, and so the only safe rollback is to roll back all the

way back to the beginning. (I.e. abort the process and make it start over.)

Starvation - How do you guarantee that a process won't starve because its resources are constantly

being preempted? One option would be to use a priority system, and increase the priority of a process

every time its resources get preempted. Eventually it should get a high enough priority that it won't

get preempted any more.

102

UNIT IV

Mass-Storage Structure

Overview of Mass-Storage Structure

Magnetic Disks

Traditional magnetic disks have the following basic structure:

 One or more platters in the form of disks covered with magnetic media. Hard disk platters

are made of rigid metal, while "floppy" disks are made of more flexible plastic.

 Each platter has two working surfaces. Older hard disk drives would sometimes not use

the very top or bottom surface of a stack of platters, as these surfaces were more

susceptible to potential damage.

 Each working surface is divided into a number of concentric rings called tracks. The

collection of all tracks that are the same distance from the edge of the platter, (i.e. all

tracks immediately above one another in the following diagram) is called a cylinder.

 Each track is further divided into sectors, traditionally containing 512 bytes of data each,

although some modern disks occasionally use larger sector sizes. (Sectors also include a

header and a trailer, including checksum information among other things. Larger sector

sizes reduce the fraction of the disk consumed by headers and trailers, but increase

internal fragmentation and the amount of disk that must be marked bad in the case of

errors.)

 The data on a hard drive is read by read-write heads. The standard configuration (shown

below) uses one head per surface, each on a separate arm, and controlled by a common

arm assembly which moves all heads simultaneously from one cylinder to another. (Other

configurations, including independent read-write heads, may speed up disk access, but

involve serious technical difficulties.)

 The storage capacity of a traditional disk drive is equal to the number of heads (i.e. the

number of working surfaces), times the number of tracks per surface, times the number of

sectors per track, times the number of bytes per sector. A particular physical block of data

is specified by providing the head-sector-cylinder number at which it is located.

103

Fig: Moving-head disk mechanism

 In operation the disk rotates at high speed, such as 7200 rpm (120 revolutions per

second.) The rate at which data can be transferred from the disk to the computer is

composed of several steps:

o The positioning time, a.k.a. the seek time or random access time is the time

required to move the heads from one cylinder to another, and for the heads to

settle down after the move. This is typically the slowest step in the process and

the predominant bottleneck to overall transfer rates.

o The rotational latency is the amount of time required for the desired sector to

rotate around and come under the read-write head. This can range anywhere from

zero to one full revolution, and on the average will equal one-half revolution. This

is another physical step and is usually the second slowest step behind seek time.

(For a disk rotating at 7200 rpm, the average rotational latency would be 1/2

revolution / 120 revolutions per second, or just over 4 milliseconds, a long time

by computer standards.

o The transfer rate, which is the time required to move the data electronically from

the disk to the computer. (Some authors may also use the term transfer rate to

refer to the overall transfer rate, including seeks time and rotational latency as

well as the electronic data transfer rate.)

 Disk heads "fly" over the surface on a very thin cushion of air. If they should accidentally

contact the disk, then a head crash occurs, which May or may not permanently damage

the disk or even destroy it completely. For this reason it is normal to park the disk heads

when turning a computer off, which means to move the heads off the disk or to an area of

the disk where there is no data stored.

104

 Floppy disks are normally removable. Hard drives can also be removable, and some are

even hot-swappable, meaning they can be removed while the computer is running, and a

new hard drive inserted in their place.

 Disk drives are connected to the computer via a cable known as the I/O Bus. Some of the

common interface formats include Enhanced Integrated Drive Electronics, EIDE;

Advanced Technology Attachment, ATA; Serial ATA, SATA, Universal Serial Bus,

USB; Fiber Channel, FC, and Small Computer Systems Interface, SCSI.

 The host controller is at the computer end of the I/O bus, and the disk controller is built

into the disk itself. The CPU issues commands to the host controller via I/O ports. Data is

transferred between the magnetic surface and onboard cache by the disk controller, and

then the data is transferred from that cache to the host controller and the motherboard

memory at electronic speeds.

Solid-State Disks - New

 As technologies improve and economics change, old technologies are often used in

different ways. One example of this is the increasing use of solid state disks, or SSDs.

 SSDs use memory technology as a small fast hard disk. Specific implementations may

use either flash memory or DRAM chips protected by a battery to sustain the information

through power cycles.

 Because SSDs have no moving parts they are much faster than traditional hard drives,

and certain problems such as the scheduling of disk accesses simply do not apply.

 However SSDs also have their weaknesses: They are more expensive than hard drives,

generally not as large, and may have shorter life spans.

 SSDs are especially useful as a high-speed cache of hard-disk information that must be

accessed quickly. One example is to store file system meta-data, e.g. directory and anode

information that must be accessed quickly and often. Another variation is a boot disk

containing the OS and some application executables, but no vital user data. SSDs are also

used in laptops to make them smaller, faster, and lighter.

 Because SSDs are so much faster than traditional hard disks, the throughput of the bus

can become a limiting factor, causing some SSDs to be connected directly to the system

PCI bus for example.

Magnetic Tapes

 Magnetic tapes were once used for common secondary storage before the days of hard

disk drives, but today are used primarily for backups.

 Accessing a particular spot on a magnetic tape can be slow, but once reading or writing

commences, access speeds are comparable to disk drives.

 Capacities of tape drives can range from 20 to 200 GB and compression can double that

capacity.

105

Disk Structure

 The traditional head-sector-cylinder, HSC numbers are mapped to linear block addresses

by numbering the first sector on the first head on the outermost track as sector 0.

Numbering proceeds with the rest of the sectors on that same track, and then the rest of

the tracks on the same cylinder before proceeding through the rest of the cylinders to the

center of the disk. In modern practice these linear block addresses are used in place of the

HSC numbers for a variety of reasons:

1. The linear length of tracks near the outer edge of the disk is much longer than for

those tracks located near the center, and therefore it is possible to squeeze many

more sectors onto outer tracks than onto inner ones.

2. All disks have some bad sectors, and therefore disks maintain a few spare sectors

that can be used in place of the bad ones. The mapping of spare sectors to bad

sectors in managed internally to the disk controller.

3. Modern hard drives can have thousands of cylinders, and hundreds of sectors per

track on their outermost tracks. These numbers exceed the range of HSC numbers

for many (older) operating systems, and therefore disks can be configured for any

convenient combination of HSC values that falls within the total number of

sectors physically on the drive.

 There is a limit to how closely packed individual bits can be placed on a physical media,

but that limit is growing increasingly more packed as technological advances are made.

 Modern disks pack many more sectors into outer cylinders than inner ones, using one of

two approaches:

o With Constant Linear Velocity, CLV, the density of bits is uniform from

cylinder to cylinder. Because there are more sectors in outer cylinders, the disk

spins slower when reading those cylinders, causing the rate of bits passing under

the read-write head to remain constant. This is the approach used by modern CDs

and DVDs.

o With Constant Angular Velocity, CAV, the disk rotates at a constant angular

speed, with the bit density decreasing on outer cylinders. (These disks would have

a constant number of sectors per track on all cylinders.)

Disk Attachment

Disk drives can be attached either directly to a particular host (a local disk) or to a network.

Host-Attached Storage

 Local disks are accessed through I/O Ports as described earlier.

 The most common interfaces are IDE or ATA, each of which allow up to two drives per

host controller.

 SATA is similar with simpler cabling.

106

 High end workstations or other systems in need of larger number of disks typically use

SCSI disks:

o The SCSI standard supports up to 16 targets on each SCSI bus, one of which is

generally the host adapter and the other 15 of which can be disk or tape drives.

o A SCSI target is usually a single drive, but the standard also supports up to 8 units

within each target. These would generally be used for accessing individual disks

within a RAID array. (See below.)

o The SCSI standard also supports multiple host adapters in a single computer, i.e.

multiple SCSI busses.

o Modern advancements in SCSI include "fast" and "wide" versions, as well as

SCSI-2.

o SCSI cables may be either 50 or 68 conductors. SCSI devices may be external as

well as internal.

 FC is a high-speed serial architecture that can operate over optical fiber or four-conductor

copper wires, and has two variants:

o A large switched fabric having a 24-bit address space. This variant allows for

multiple devices and multiple hosts to interconnect, forming the basis for the

storage-area networks, SANs, to be discussed in a future section.

o The arbitrated loop, FC-AL that can address up to 126 devices (drives and

controllers.)

Network-Attached Storage

 Network attached storage connects storage devices to computers using a remote

procedure call, RPC, interface, typically with something like NFS file system mounts.

This is convenient for allowing several computers in a group common access and naming

conventions for shared storage.

 NAS can be implemented using SCSI cabling, or ISCSI uses Internet protocols and

standard network connections, allowing long-distance remote access to shared files.

 NAS allows computers to easily share data storage, but tends to be less efficient than

standard host-attached storage.

Fig: Network-attached storage.

Storage-Area Network

 A Storage-Area Network, SAN, connects computers and storage devices in a network,

using storage protocols instead of network protocols.

107

 One advantage of this is that storage access does not tie up regular networking

bandwidth.

 SAN is very flexible and dynamic, allowing hosts and devices to attach and detach on the

fly.

 SAN is also controllable, allowing restricted access to certain hosts and devices.

Fig: Storage-area network.

Disk Scheduling

 As mentioned earlier, disk transfer speeds are limited primarily by seek times and

rotational latency. When multiple requests are to be processed there is also some inherent

delay in waiting for other requests to be processed.

 Bandwidth is measured by the amount of data transferred divided by the total amount of

time from the first request being made to the last transfer being completed, (for a series of

disk requests.)

 Both bandwidth and access time can be improved by processing requests in a good order.

 Disk requests include the disk address, memory address, number of sectors to transfer,

and whether the request is for reading or writing.

FCFS Scheduling

First-Come First-Serve is simple and intrinsically fair, but not very efficient. Consider in the

following sequence the wild swing from cylinder 122 to 14 and then back to 124:

108

Fig: FCFS disk scheduling.

SSTF Scheduling

 Shortest Seek Time First scheduling is more efficient, but may lead to starvation if a

constant stream of requests arrives for the same general area of the disk.

 SSTF reduces the total head movement to 236 cylinders, down from 640 required for the

same set of requests under FCFS. Note, however that the distance could be reduced still

further to 208 by starting with 37 and then 14 first before processing the rest of the

requests.

Fig: SSTF disk scheduling.

109

SCAN Scheduling

The SCAN algorithm, a.k.a. the elevator algorithm moves back and forth from one end of the

disk to the other, similarly to an elevator processing requests in a tall building.

Fig: SCAN disk scheduling.

 Under the SCAN algorithm, if a request arrives just ahead of the moving head then it will

be processed right away, but if it arrives just after the head has passed, then it will have to

wait for the head to pass going the other way on the return trip. This leads to a fairly wide

variation in access times which can be improved upon.

 Consider, for example, when the head reaches the high end of the disk: Requests with

high cylinder numbers just missed the passing head, which means they are all fairly

recent requests, whereas requests with low numbers may have been waiting for a much

longer time. Making the return scan from high to low then ends up accessing recent

requests first and making older requests wait that much longer.

C-SCAN Scheduling

The Circular-SCAN algorithm improves upon SCAN by treating all requests in a circular queue

fashion - Once the head reaches the end of the disk, it returns to the other end without processing

any requests, and then starts again from the beginning of the disk:

110

Fig: C-SCAN disk scheduling.

LOOK Scheduling

LOOK scheduling improves upon SCAN by looking ahead at the queue of pending requests, and

not moving the heads any farther towards the end of the disk than is necessary. The following

diagram illustrates the circular form of LOOK:

Fig: C-LOOK disk scheduling.

111

Selection of a Disk-Scheduling Algorithm

 With very low loads all algorithms are equal, since there will normally only be one

request to process at a time.

 For slightly larger loads, SSTF offers better performance than FCFS, but may lead to

starvation when loads become heavy enough.

 For busier systems, SCAN and LOOK algorithms eliminate starvation problems.

 The actual optimal algorithm may be something even more complex than those discussed

here, but the incremental improvements are generally not worth the additional overhead.

 Some improvement to overall file system access times can be made by intelligent

placement of directory and/or inode information. If those structures are placed in the

middle of the disk instead of at the beginning of the disk, then the maximum distance

from those structures to data blocks is reduced to only one-half of the disk size. If those

structures can be further distributed and furthermore have their data blocks stored as

close as possible to the corresponding directory structures, then that reduces still further

the overall time to find the disk block numbers and then access the corresponding data

blocks.

 On modern disks the rotational latency can be almost as significant as they seek time,

however it is not within the OSes control to account for that, because modern disks do

not reveal their internal sector mapping schemes, (particularly when bad blocks have

been remapped to spare sectors.)

o Some disk manufacturers provide for disk scheduling algorithms directly on their

disk controllers, (which do know the actual geometry of the disk as well as any

remapping), so that if a series of requests are sent from the computer to the

controller then those requests can be processed in an optimal order.

o Unfortunately there are some considerations that the OS must take into account

that are beyond the abilities of the on-board disk-scheduling algorithms, such as

priorities of some requests over others, or the need to process certain requests in a

particular order. For this reason OSes may elect to spoon-feed requests to the disk

controller one at a time in certain situations.

Disk Management

Disk Formatting

 Before a disk can be used, it has to be low-level formatted, which means laying down all

of the headers and trailers marking the beginning and ends of each sector. Included in the

header and trailer are the linear sector numbers, and error-correcting codes, ECC, which

allow damaged sectors to not only be detected, but in many cases for the damaged data to

be recovered (depending on the extent of the damage.) Sector sizes are traditionally 512

bytes, but may be larger, particularly in larger drives.

112

 ECC calculation is performed with every disk read or write, and if damage is detected but

the data is recoverable, then a soft error has occurred. Soft errors are generally handled

by the on-board disk controller, and never seen by the OS. (See below.)

 Once the disk is low-level formatted, the next step is to partition the drive into one or

more separate partitions. This step must be completed even if the disk is to be used as a

single large partition, so that the partition table can be written to the beginning of the

disk.

 After partitioning, then the file systems must be logically formatted, which involves

laying down the master directory information (FAT table or inode structure), initializing

free lists, and creating at least the root directory of the file system. (Disk partitions which

are to be used as raw devices are not logically formatted. This saves the overhead and

disk space of the file system structure, but requires that the application program manage

its own disk storage requirements.)

Boot Block

 Computer ROM contains a bootstrap program (OS independent) with just enough code to

find the first sector on the first hard drive on the first controller, load that sector into

memory, and transfer control over to it. (The ROM bootstrap program may look in

floppy and/or CD drives before accessing the hard drive, and is smart enough to

recognize whether it has found valid boot code or not.)

 The first sector on the hard drive is known as the Master Boot Record, MBR, and

contains a very small amount of code in addition to the partition table. The partition table

documents how the disk is partitioned into logical disks, and indicates specifically which

partition is the active or boot partition.

 The boot program then looks to the active partition to find an operating system, possibly

loading up a slightly larger / more advanced boot program along the way.

 In a dual-boot (or larger multi-boot) system, the user may be given a choice of which

operating system to boot, with a default action to be taken in the event of no response

within some time frame.

 Once the kernel is found by the boot program, it is loaded into memory and then control

is transferred over to the OS. The kernel will normally continue the boot process by

initializing all important kernel data structures, launching important system services (e.g.

network daemons, sched, init, etc.), and finally providing one or more login prompts.

Boot options at this stage may include single-user a.k.a. maintenance or safe modes, in

which very few system services are started - These modes are designed for system

administrators to repair problems or otherwise maintain the system.

113

Fig: Booting from disk in Windows 2000.

Bad Blocks

 No disk can be manufactured to 100% perfection, and all physical objects wear out over

time. For these reasons all disks are shipped with a few bad blocks, and additional blocks

can be expected to go bad slowly over time. If a large number of blocks go bad then the

entire disk will need to be replaced, but a few here and there can be handled through

other means.

 In the old days, bad blocks had to be checked for manually. Formatting of the disk or

running certain disk-analysis tools would identify bad blocks, and attempt to read the data

off of them one last time through repeated tries. Then the bad blocks would be mapped

out and taken out of future service. Sometimes the data could be recovered, and

sometimes it was lost forever. (Disk analysis tools could be either destructive or non-

destructive.)

 Modern disk controllers make much better use of the error-correcting codes, so that bad

blocks can be detected earlier and the data usually recovered. (Recall that blocks are

tested with every write as well as with every read, so often errors can be detected before

the write operation is complete, and the data simply written to a different sector instead.)

 Note that re-mapping of sectors from their normal linear progression can throw off the

disk scheduling optimization of the OS, especially if the replacement sector is physically

far away from the sector it is replacing. For this reason most disks normally keep a few

spare sectors on each cylinder, as well as at least one spare cylinder. Whenever possible a

bad sector will be mapped to another sector on the same cylinder, or at least a cylinder as

close as possible. Sector slipping may also be performed, in which all sectors between the

114

bad sector and the replacement sector are moved down by one, so that the linear

progression of sector numbers can be maintained.

 If the data on a bad block cannot be recovered, then a hard error has occurred. which

requires replacing the file(s) from backups, or rebuilding them from scratch.

Swap-Space Management

 Modern systems typically swap out pages as needed, rather than swapping out entire

processes. Hence the swapping system is part of the virtual memory management system.

 Managing swap space is obviously an important task for modern OSes.

Swap-Space Use

 The amount of swap space needed by an OS varies greatly according to how it is used.

Some systems require an amount equal to physical RAM; some want a multiple of that;

some want an amount equal to the amount by which virtual memory exceeds physical

RAM, and some systems use little or none at all!

 Some systems support multiple swap spaces on separate disks in order to speed up the

virtual memory system.

Swap-Space Location

Swap space can be physically located in one of two locations:

 As a large file which is part of the regular file system. This is easy to implement, but

inefficient. Not only must the swap space be accessed through the directory system, the

file is also subject to fragmentation issues. Caching the block location helps in finding the

physical blocks, but that is not a complete fix.

 As a raw partition, possibly on a separate or little-used disk. This allows the OS more

control over swap space management, which is usually faster and more efficient.

Fragmentation of swap space is generally not a big issue, as the space is re-initialized

every time the system is rebooted. The downside of keeping swap space on a raw

partition is that it can only be grown by repartitioning the hard drive.

Swap-Space Management: An Example

 Historically OSes swapped out entire processes as needed. Modern systems swap out

only individual pages, and only as needed. (For example process code blocks and other

blocks that have not been changed since they were originally loaded are normally just

freed from the virtual memory system rather than copying them to swap space, because it

is faster to go find them again in the file system and read them back in from there than to

write them out to swap space and then read them back.)

 In the mapping system shown below for Linux systems, a map of swap space is kept in

memory, where each entry corresponds to a 4K block in the swap space. Zeros indicate

115

free slots and non-zeros refer to how many processes have a mapping to that particular

block (>1 for shared pages only.)

Fig: The data structures for swapping on Linux systems.

RAID Structure

 The general idea behind RAID is to employ a group of hard drives together with some

form of duplication, either to increase reliability or to speed up operations, (or sometimes

both.)

 RAID originally stood for Redundant Array of Inexpensive Disks, and was designed to

use a bunch of cheap small disks in place of one or two larger more expensive ones.

Today RAID systems employ large possibly expensive disks as their components,

switching the definition to Independent disks.

Improvement of Reliability via Redundancy

 The more disks a system has, the greater the likelihood that one of them will go bad at

any given time. Hence increasing disks on a system actually decreases the Mean Time to

Failure, MTTF of the system.

 If, however, the same data was copied onto multiple disks, then the data would not be lost

unless both (or all) copies of the data were damaged simultaneously, which a MUCH

lower probability than for a single disk is going bad. More specifically, the second disk

would have to go bad before the first disk was repaired, which brings the Mean Time to

Repair into play. For example if two disks were involved, each with a MTTF of 100,000

hours and a MTTR of 10 hours, then the Mean Time to Data Loss would be 500 * 10^6

hours, or 57,000 years!

 This is the basic idea behind disk mirroring, in which a system contains identical data on

two or more disks.

116

o Note that a power failure during a write operation could cause both disks to

contain corrupt data, if both disks were writing simultaneously at the time of the

power failure. One solution is to write to the two disks in series, so that they will

not both become corrupted (at least not in the same way) by a power failure. And

alternate solution involves non-volatile RAM as a write cache, which is not lost in

the event of a power failure and which is protected by error-correcting codes.

Improvement in Performance via Parallelism

 There is also a performance benefit to mirroring, particularly with respect to reads. Since

every block of data is duplicated on multiple disks, read operations can be satisfied from

any available copy, and multiple disks can be reading different data blocks

simultaneously in parallel. (Writes could possibly be sped up as well through careful

scheduling algorithms, but it would be complicated in practice.)

 Another way of improving disk access time is with striping, which basically means

spreading data out across multiple disks that can be accessed simultaneously.

o With bit-level striping the bits of each byte are striped across multiple disks. For

example if 8 disks were involved, then each 8-bit byte would be read in parallel

by 8 heads on separate disks. A single disk read would access 8 * 512 bytes = 4K

worth of data in the time normally required to read 512 bytes. Similarly if 4 disks

were involved, then two bits of each byte could be stored on each disk, for 2K

worth of disk access per read or write operation.

o Block-level striping spreads a file system across multiple disks on a block-by-

block basis, so if block N were located on disk 0, then block N + 1 would be on

disk 1, and so on. This is particularly useful when file systems are accessed in

clusters of physical blocks. Other striping possibilities exist, with block-level

striping being the most common.

RAID Levels

 Mirroring provides reliability but is expensive; Striping improves performance, but does

not improve reliability. Accordingly there are a number of different schemes that

combine the principals of mirroring and striping in different ways, in order to balance

reliability versus performance versus cost. These are described by different RAID levels,

as follows: (In the diagram that follows, "C" indicates a copy, and "P" indicates parity,

i.e. checksum bits.)

o Raid Level 0 - This level includes striping only, with no mirroring.

o Raid Level 1 - This level includes mirroring only, no striping.

o Raid Level 2 - This level stores error-correcting codes on additional disks,

allowing for any damaged data to be reconstructed by subtraction from the

remaining undamaged data. Note that this scheme requires only three extra disks

to protect 4 disks worth of data, as opposed to full mirroring. (The number of

117

disks required is a function of the error-correcting algorithms, and the means by

which the particular bad bit(s) is (are) identified.)

o Raid Level 3 - This level is similar to level 2, except that it takes advantage of the

fact that each disk is still doing its own error-detection, so that when an error

occurs, there is no question about which disk in the array has the bad data. As a

result a single parity bit is all that is needed to recover the lost data from an array

of disks. Level 3 also includes striping, which improves performance. The

downside with the parity approach is that every disk must take part in every disk

access, and the parity bits must be constantly calculated and checked, reducing

performance. Hardware-level parity calculations and NVRAM cache can help

with both of those issues. In practice level 3 is greatly preferred over level 2.

o Raid Level 4 - This level is similar to level 3, employing block-level striping

instead of bit-level striping. The benefits are that multiple blocks can be read

independently, and changes to a block only require writing two blocks (data and

parity) rather than involving all disks. Note that new disks can be added

seamlessly to the system provided they are initialized to all zeros, as this does not

affect the parity results.

o Raid Level 5 - This level is similar to level 4, except the parity blocks are

distributed over all disks, thereby more evenly balancing the load on the system.

For any given block on the disk(s), one of the disks will hold the parity

information for that block and the other N-1 disks will hold the data. Note that the

same disk cannot hold both data and parity for the same block, as both would be

lost in the event of a disk crash.

o Raid Level 6 - This level extends raid level 5 by storing multiple bits of error-

recovery codes, (such as the Reed-Solomon codes), for each bit position of data,

rather than a single parity bit. In the example shown below 2 bits of ECC are

stored for every 4 bits of data, allowing data recovery in the face of up to two

simultaneous disk failures. Note that this still involves only 50% increase in

storage needs, as opposed to 100% for simple mirroring which could only tolerate

a single disk failure.

118

Fig: RAID levels.

 There are also two RAID levels which combine RAID levels 0 and 1 (striping and

mirroring) in different combinations, designed to provide both performance and

reliability at the expense of increased cost.

o RAID level 0 + 1 disks are first striped, and then the striped disks mirrored to

another set. This level generally provides better performance than RAID level 5.

o RAID level 1 + 0 mirrors disks in pairs, and then stripes the mirrored pairs. The

storage capacity, performance, etc. are all the same, but there is an advantage to

this approach in the event of multiple disk failures, as illustrated below:.

 In diagram (a) below, the 8 disks have been divided into two sets of four,

each of which is striped, and then one stripe set is used to mirror the other

set.

 If a single disk fails, it wipes out the entire stripe set, but the

system can keep on functioning using the remaining set.

 However if a second disk from the other stripe set now fails, then

the entire system is lost, as a result of two disk failures.

 In diagram (b), the same 8 disks are divided into four sets of two, each of

which is mirrored, and then the file system is striped across the four sets of

mirrored disks.

119

 If a single disk fails, then that mirror set is reduced to a single disk,

but the system rolls on, and the other three mirror sets continue

mirroring.

 Now if a second disk fails, (that is not the mirror of the already

failed disk), then another one of the mirror sets is reduced to a

single disk, but the system can continue without data loss.

 In fact the second arrangement could handle as many as four

simultaneously failed disks, as long as no two of them were from

the same mirror pair.

Fig: RAID 0 + 1 and 1 + 0

Selecting a RAID Level

 Trade-offs in selecting the optimal RAID level for a particular application include cost,

volume of data, need for reliability, need for performance, and rebuild time, the latter of

which can affect the likelihood that a second disk will fail while the first failed disk is

being rebuilt.

 Other decisions include how many disks are involved in a RAID set and how many disks

to protect with a single parity bit. More disks in the set increases performance but

increases cost. Protecting more disks per parity bit saves cost, but increases the likelihood

that a second disk will fail before the first bad disk is repaired.

120

Extensions

RAID concepts have been extended to tape drives (e.g. striping tapes for faster backups or parity

checking tapes for reliability), and for broadcasting of data.

Problems with RAID

 RAID protects against physical errors, but not against any number of bugs or other errors

that could write erroneous data.

 ZFS adds an extra level of protection by including data block checksums in all inodes

along with the pointers to the data blocks. If data are mirrored and one copy has the

correct checksum and the other does not, then the data with the bad checksum will be

replaced with a copy of the data with the good checksum. This increases reliability

greatly over RAID alone, at a cost of a performance hit that is acceptable because ZFS is

so fast to begin with.

Fig: ZFS checksums all metadata and data.

 Another problem with traditional file systems is that the sizes are fixed, and relatively

difficult to change. Where RAID sets are involved it becomes even harder to adjust file

system sizes, because a file system cannot span across multiple file systems.

 ZFS solves these problems by pooling RAID sets, and by dynamically allocating space to

file systems as needed. File system sizes can be limited by quotas, and space can also be

reserved to guarantee that a file system will be able to grow later, but these parameters

can be changed at any time by the file system’s owner. Otherwise file systems grow and

shrink dynamically as needed.

121

Fig: (a) Traditional volumes and file systems. (b) a ZFS pool and file systems.

Stable-Storage Implementation

 The concept of stable storage (first presented in chapter 6) involves a storage medium in

which data is never lost, even in the face of equipment failure in the middle of a write

operation.

 To implement this requires two (or more) copies of the data, with separate failure modes.

 An attempted disk write results in one of three possible outcomes:

o The data is successfully and completely written.

o The data is partially written, but not completely. The last block written may be

garbled.

o No writing takes place at all.

122

 Whenever an equipment failure occurs during a write, the system must detect it, and

return the system back to a consistent state. To do this requires two physical blocks for

every logical block, and the following procedure:

o Write the data to the first physical block.

o After step 1 had completed, then write the data to the second physical block.

o Declare the operation complete only after both physical writes have completed

successfully.

 During recovery the pair of blocks is examined.

o If both blocks are identical and there is no sign of damage, then no further action

is necessary.

o If one block contains a detectable error but the other does not, then the damaged

block is replaced with the good copy. (This will either undo the operation or

complete the operation, depending on which block is damaged and which is

undamaged.)

o If neither block shows damage but the data in the blocks differ, then replace the

data in the first block with the data in the second block. (Undo the operation.)

 Because the sequence of operations described above is slow, stable storage usually

includes NVRAM as a cache, and declares a write operation complete once it has been

written to the NVRAM.

4.2 FILE SYSTEM INTERFACE

File Concept

File Attributes

 Different OSes keep track of different file attributes, including:

o Name - Some systems give special significance to names, and particularly

extensions (.exe, .txt, etc.), and some do not. Some extensions may be of

significance to the OS (.exe), and others only to certain applications (.jpg)

o Identifier (e.g. inode number)

o Type - Text, executable, other binary, etc.

o Location - on the hard drive.

o Size

o Protection

o Time & Date

o User ID

File Operations

 The file ADT supports many common operations:

o Creating a file

123

o Writing a file

o Reading a file

o Repositioning within a file

o Deleting a file

o Truncating a file.

 Most OSes require that files be opened before access and closed after all access is

complete. Normally the programmer must open and close files explicitly, but some rare

systems open the file automatically at first access. Information about currently open files

is stored in an open file table, containing for example:

o File pointer - records the current position in the file, for the next read or write

access.

o File-open count - How many times has the current file been opened (

simultaneously by different processes) and not yet closed? When this counter

reaches zero the file can be removed from the table.

o Disk location of the file.

o Access rights

 Some systems provide support for file locking.

o A shared lock is for reading only.

o A exclusive lock is for writing as well as reading.

o An advisory lock is informational only, and not enforced. (A "Keep Out" sign, which

may be ignored.)

o A mandatory lock is enforced. (A truly locked door.)

o UNIX used advisory locks, and Windows uses mandatory locks.

File TypesWindows (and some other systems) use special file extensions to indicate the type

of each file:

Fig: Common File Types

124

 Macintosh stores a creator attribute for each file, according to the program that first

created it with the create() system call.

 UNIX stores magic numbers at the beginning of certain files. (Experiment with the "file"

command, especially in directories such as /bin and /dev)

File Structure

 Some files contain an internal structure, which may or may not be known to the OS.

 For the OS to support particular file formats increases the size and complexity of the OS.

 UNIX treats all files as sequences of bytes, with no further consideration of the internal

structure. (With the exception of executable binary programs, which it must know how

to load and find the first executable statement, etc.)

 Macintosh files have two forks - a resource fork, and a data fork. The resource fork

contains information relating to the UI, such as icons and button images, and can be

modified independently of the data fork, which contains the code or data as appropriate.

Internal File Structure

 Disk files are accessed in units of physical blocks, typically 512 bytes or some power-of-

two multiple thereof. (Larger physical disks use larger block sizes, to keep the range of

block numbers within the range of a 32-bit integer.)

 Internally files are organized in units of logical units, which may be as small as a single

byte, or may be a larger size corresponding to some data record or structure size.

 The number of logical units which fit into one physical block determines its packing, and

has an impact on the amount of internal fragmentation (wasted space) that occurs.

 As a general rule, half a physical block is wasted for each file, and the larger the block

sizes the more space is lost to internal fragmentation.

Access Methods

Sequential Access

 A sequential access file emulates magnetic tape operation, and generally supports a few

operations:

o read next - read a record and advance the tape to the next position.

o write next - write a record and advance the tape to the next position.

o rewind

o skip n records - May or may not be supported. N may be limited to positive

numbers, or may be limited to +/- 1.

Fig: Sequential File Access

125

Direct Access

 Jump to any record and read that record. Operations supported include:

o read n - read record number n. (Note an argument is now required.)

o write n - write record number n. (Note an argument is now required.)

o jump to record n - could be 0 or the end of file.

o Query current record - used to return back to this record later.

o Sequential access can be easily emulated using direct access. The inverse is

complicated and inefficient.

Fig: Simulation of sequential access on a direct-access file

Other Access Methods

An indexed access scheme can be easily built on top of a direct access system. Very large files

may require a multi-tiered indexing scheme, i.e. indexes of indexes.

Fig: Example of index and relative files.

Directory Structure

126

Storage Structure

 A disk can be used in its entirety for a file system.

 Alternatively a physical disk can be broken up into multiple partitions, slices, or mini-

disks, each of which becomes a virtual disk and can have its own file system. (or be used

for raw storage, swap space, etc.)

 Or, multiple physical disks can be combined into one volume, i.e. a larger virtual disk,

with its own file system spanning the physical disks.

Fig: A typical file-system organization

Directory Overview

 Directory operations to be supported include:

o Search for a file

o Create a file - add to the directory

o Delete a file - erase from the directory

o List a directory - possibly ordered in different ways.

o Rename a file - may change sorting order

o Traverse the file system.

Single-Level Directory

Simple to implement, but each file must have a unique

name.

Draw Backs:

 Naming Problem

 Grouping Problem

127

Two-Level Directory

 Each user gets their own directory space.

 File names only need to be unique within a given user's directory.

 A master file directory is used to keep track of each user’s directory, and must be

maintained when users are added to or removed from the system.

 A separate directory is generally needed for system (executable) files.

 Systems may or may not allow users to access other directories besides their own

o If access to other directories is allowed, then provision must be made to specify

the directory being accessed.

o If access is denied, then special consideration must be made for users to run

programs located in system directories. A search path is the list of directories in

which to search for executable programs, and can be set uniquely for each user.

Fig: Two-level directory structure.

Tree-Structured Directories

 An obvious extension to the two-tiered directory structure, and the one with which we are

all most familiar.

 Each user / process has the concept of a current directory from which all (relative)

searches take place.

 Files may be accessed using either absolute pathnames (relative to the root of the tree)

or relative pathnames (relative to the current directory.)

 Directories are stored the same as any other file in the system, except there is a bit that

identifies them as directories, and they have some special structure that the OS

understands.

 One question for consideration is whether or not to allow the removal of directories that

are not empty - Windows requires that directories be emptied first, and UNIX provides an

option for deleting entire sub-trees.

128

Fig: Tree Structured Directory Structure

Acyclic-Graph Directories

 When the same files need to be accessed in more than one place in the directory structure

(e.g. because they are being shared by more than one user / process), it can be useful to

provide an acyclic-graph structure. (Note the directed arcs from parent to child.)

 UNIX provides two types of links for implementing the acyclic-graph structure. (See

"man ln" for more details.)

o A hard link (usually just called a link) involves multiple directory entries that

both refer to the same file. Hard links are only valid for ordinary files in the same

file system.

o A symbolic link that involves a special file, containing information about where

to find the linked file. Symbolic links may be used to link directories and/or files

in other file systems, as well as ordinary files in the current file system.

 Windows only supports symbolic links, termed shortcuts.

 Hard links require a reference count, or link count for each file, keeping track of how

many directory entries are currently referring to this file. Whenever one of the references

is removed the link count is reduced, and when it reaches zero, the disk space can be

reclaimed.

 For symbolic links there is some question as to what to do with the symbolic links when

the original file is moved or deleted:

o One option is to find all the symbolic links and adjust them also.

o Another is to leave the symbolic links dangling, and discover that they are no

longer valid the next time they are used.

o What if the original file is removed, and replaced with another file having the

same name before the symbolic link is next used?

129

Fig: A cyclic-graph Directory Structure

General Graph Directory

 If cycles are allowed in the graphs, then several problems can arise:

o Search algorithms can go into infinite loops. One solution is to not follow links in

search algorithms. (Or not to follow symbolic links, and to only allow symbolic

links to refer to directories.)

o Sub-trees can become disconnected from the rest of the tree and still not have

their reference counts reduced to zero. Periodic garbage collection is required to

detect and resolve this problem. (chkdsk in DOS and fsck in UNIX search for

these problems, among others, even though cycles are not supposed to be allowed

in either system. Disconnected disk blocks that are not marked as free are added

back to the file systems with made-up file names, and can usually be safely

deleted.)

Fig: General Graph Directory

130

File-System Mounting

 The basic idea behind mounting file systems is to combine multiple file systems into one

large tree structure.

 The mount command is given a file system to mount and a mount point (directory) on

which to attach it.

 Once a file system is mounted onto a mount point, any further references to that directory

actually refer to the root of the mounted file system.

 Any files (or sub-directories) that had been stored in the mount point directory prior to

mounting the new file system are now hidden by the mounted file system, and are no

longer available. For this reason some systems only allow mounting onto empty

directories.

 File systems can only be mounted by root, unless root has previously configured certain

file systems to be mountable onto certain pre-determined mount points. (E.g. root may

allow users to mount floppy file systems to /mnt or something like it.) Anyone can run

the mount command to see what file systems are currently mounted.

 File systems may be mounted read-only, or have other restrictions imposed.

Figure :File system. (a) Existing system. (b) Unmounted volume.

131

Figure :Mount point.

 The traditional Windows OS runs an extended two-tier directory structure, where the first

tier of the structure separates volumes by drive letters, and a tree structure is implemented

below that level.

 Macintosh runs a similar system, where each new volume that is found is automatically

mounted and added to the desktop when it is found.

 More recent Windows systems allow file systems to be mounted to any directory in the

file system, much like UNIX.

File Sharing

Multiple Users

 On a multi-user system, more information needs to be stored for each file:

o The owner (user) who owns the file, and who can control its access.

o The group of other user IDs that may have some special access to the file.

o What access rights are afforded to the owner (User), the Group, and to the rest of

the world (the universe, a.k.a. Others.)

o Some systems have more complicated access control, allowing or denying

specific accesses to specifically named users or groups.

Remote File Systems

 The advent of the Internet introduces issues for accessing files stored on remote

computers

o The original method was ftp, allowing individual files to be transported across

systems as needed. Ftp can be either account and password controlled, or

anonymous, not requiring any user name or password.

o Various forms of distributed file systems allow remote file systems to be mounted

onto a local directory structure, and accessed using normal file access commands.

(The actual files are still transported across the network as needed, possibly using

ftp as the underlying transport mechanism.)

o The WWW has made it easy once again to access files on remote systems without

mounting their file systems, generally using (anonymous) ftp as the underlying

file transport mechanism.

The Client-Server Model

 When one computer system remotely mounts a file system that is physically located on

another system, the system which physically owns the files acts as a server, and the

system which mounts them is the client.

132

 User IDs and group IDs must be consistent across both systems for the system to work

properly. (I.e. this is most applicable across multiple computers managed by the same

organization, shared by a common group of users.)

 The same computer can be both a client and a server. (E.g. cross-linked file systems.)

 There are a number of security concerns involved in this model:

o Servers commonly restrict mount permission to certain trusted systems only.

Spoofing (a computer pretending to be a different computer) is a potential

security risk.

o Servers may restrict remote access to read-only.

o Servers restrict which file systems may be remotely mounted. Generally the

information within those subsystems is limited, relatively public, and protected by

frequent backups.

 The NFS (Network File System) is a classic example of such a system.

Distributed Information Systems

 The Domain Name System, DNS, provides for a unique naming system across all of the

Internet.

 Domain names are maintained by the Network Information System, NIS, which

unfortunately has several security issues. NIS+ is a more secure version, but has not yet

gained the same widespread acceptance as NIS.

 Microsoft's Common Internet File System, CIFS, establishes a network login for each

user on a networked system with shared file access. Older Windows systems used

domains, and newer systems (XP, 2000), use active directories. User names must match

across the network for this system to be valid.

 A newer approach is the Lightweight Directory-Access Protocol, LDAP, which provides

a secure single sign-on for all users to access all resources on a network. This is a secure

system which is gaining in popularity, and which has the maintenance advantage of

combining authorization information in one central location.

Failure Modes

 When a local disk file is unavailable, the result is generally known immediately, and is

generally non-recoverable. The only reasonable response is for the response to fail.

 However when a remote file is unavailable, there are many possible reasons, and whether

or not it is unrecoverable is not readily apparent. Hence most remote access systems

allow for blocking or delayed response, in the hopes that the remote system (or the

network) will come back up eventually.

Consistency Semantics

 Consistency Semantics deals with the consistency between the views of shared files on a

networked system. When one user changes the file, when do other users see the changes?

133

 At first glance this appears to have all of the synchronization issues. Unfortunately the

long delays involved in network operations prohibit the use of atomic operations.

UNIX Semantics

 The UNIX file system uses the following semantics:

 Writes to an open file are immediately visible to any other user who has the file open.

 One implementation uses a shared location pointer, which is adjusted for all sharing

users.

 The file is associated with a single exclusive physical resource, which may delay some

accesses.

Session Semantics

 The Andrew File System, AFS uses the following semantics:

o Writes to an open file are not immediately visible to other users.

o When a file is closed, any changes made become available only to users who open

the file at a later time.

 According to these semantics, a file can be associated with multiple (possibly different)

views. Almost no constraints are imposed on scheduling accesses. No user is delayed in

reading or writing their personal copy of the file.

 AFS file systems may be accessible by systems around the world. Access control is

maintained through (somewhat) complicated access control lists, which may grant

access to the entire world (literally) or to specifically named users accessing the files

from specifically named remote environments.

Immutable-Shared-Files Semantics

Under this system, when a file is declared as shared by its creator, it becomes immutable and the

name cannot be re-used for any other resource. Hence it becomes read-only, and shared access is

simple.

Protection

 Files must be kept safe for reliability (against accidental damage), and protection (

against deliberate malicious access.) The former is usually managed with backup copies.

This section discusses the latter.

 One simple protection scheme is to remove all access to a file. However this makes the

file unusable, so some sort of controlled access must be arranged.

Types of Access

The following low-level operations are often controlled:

o Read - View the contents of the file

134

o Write - Change the contents of the file.

o Execute - Load the file onto the CPU and follow the instructions contained therein.

o Append - Add to the end of an existing file.

o Delete - Remove a file from the system.

o List -View the name and other attributes of files on the system.

Higher-level operations, such as copy, can generally be performed through combinations of the

above.

Access Control

 One approach is to have complicated Access Control Lists, ACL, which specify exactly

what access is allowed or denied for specific users or groups.

o The AFS uses this system for distributed access.

o Control is very finely adjustable, but may be complicated, particularly when the

specific users involved are unknown. (AFS allows some wild cards, so for

example all users on a certain remote system may be trusted, or a given username

may be trusted when accessing from any remote system.)

 UNIX uses a set of 9 access control bits, in three groups of three. These correspond to R,

W, and X permissions for each of the Owner, Group, and Others. (See "man chmod" for

full details.) The RWX bits control the following privileges for ordinary files and

directories:

 In addition there are some special bits that can also be applied:

o The set user ID (SUID) bit and/or the set group ID (SGID) bits applied to

executable files temporarily change the identity of whoever runs the program to

match that of the owner / group of the executable program. This allows users

running specific programs to have access to files (while running that program) to

which they would normally be unable to access. Setting of these two bits is

usually restricted to root, and must be done with caution, as it introduces a

potential security leak.

o The sticky bit on a directory modifies write permission, allowing users to only

delete files for which they are the owner. This allows everyone to create files in

/tmp, for example, but to only delete files which they have created, and not

anyone else's.

o The SUID, SGID, and sticky bits are indicated with an S, S, and T in the positions

for execute permission for the user, group, and others, respectively. If the letter is

lower case, (s, s, t), then the corresponding execute permission is not also given.

If it is upper case, (S, S, T), then the corresponding execute permission IS given.

o The numeric form of chmod is needed to set these advanced bits.

135

Fig: Sample permissions in a UNIX system.

 Windows adjusts files access through a simple GUI:

Figure - Windows 7 access-control list management.

Other Protection Approaches and Issues

 Some systems can apply passwords, either to individual files, or to specific sub-

directories, or to the entire system. There is a trade-off between the number of passwords

that must be maintained (and remembered by the users) and the amount of information

that is vulnerable to a lost or forgotten password.

 Older systems which did not originally have multi-user file access permissions (DOS

and older versions of Mac) must now be retrofitted if they are to share files on a

network.

136

 Access to a file requires access to all the files along its path as well. In a cyclic directory

structure, users may have different access to the same file accessed through different

paths.

 Sometimes just the knowledge of the existence of a file of a certain name is a security (or

privacy) concern. Hence the distinction between the R and X bits on UNIX directories.

4.3 File-System Implementation

File-System Structure

 Hard disks have two important properties that make them suitable for secondary storage

of files in file systems: (1) Blocks of data can be rewritten in place, and

(2) they are direct access, allowing any block of data to be

accessed with only (relatively) minor movements of the disk

heads and rotational latency.

 Disks are usually accessed in physical blocks, rather than a byte at a time. Block sizes

may range from 512 bytes to 4K or larger.

 File systems organize storage on disk drives, and can be viewed as a layered design:

o At the lowest layer are the physical devices, consisting of the magnetic media,

motors & controls, and the electronics connected to them and controlling them.

Modern disk put more and more of the electronic controls directly on the disk

drive itself, leaving relatively little work for the disk controller card to perform.

o I/O Control consists of device drivers, special software programs (often written

in assembly) which communicate with the devices by reading and writing special

codes directly to and from memory addresses corresponding to the controller

card's registers. Each controller card (device) on a system has a different set of

addresses (registers, a.k.a. ports) that it listens to, and a unique set of command

codes and results codes that it understands.

o The basic file system level works directly with the device drivers in terms of

retrieving and storing raw blocks of data, without any consideration for what is in

each block. Depending on the system, blocks may be referred to with a single

block number, (e.g. block # 234234), or with head-sector-cylinder combinations.

o The file organization module knows about files and their logical blocks, and how

they map to physical blocks on the disk. In addition to translating from logical to

physical blocks, the file organization module also maintains the list of free blocks,

and allocates free blocks to files as needed.

o The logical file system deals with all of the meta data associated with a file (UID,

GID, mode, dates, etc), i.e. everything about the file except the data itself. This

level manages the directory structure and the mapping of file names to file control

137

blocks, FCBs, which contain all of the meta data as well as block number

information for finding the data on the disk.

 The layered approach to file systems means that much of the code can be used uniformly

for a wide variety of different file systems, and only certain layers need to be file system

specific. Common file systems in use include the UNIX file system, UFS, the Berkeley

Fast File System, FFS, Windows systems FAT, FAT32, NTFS, CD-ROM systems ISO

9660, and for Linux the extended file systems ext2 and ext3 (among 40 others supported)

Fig: Layered file system

File-System Implementation

Overview

 File systems store several important data structures on the disk:

o A boot-control block, (per volume) a.k.a. the boot block in UNIX or the partition

boot sector in Windows contains information about how to boot the system off of

this disk. This will generally be the first sector of the volume if there is a bootable

system loaded on that volume, or the block will be left vacant otherwise.

o A volume control block, (per volume) a.k.a. the master file table in UNIX or the

superblock in Windows, which contains information such as the partition table,

number of blocks on each file system, and pointers to free blocks and free FCB

blocks.

o A directory structure (per file system), containing file names and pointers to

corresponding FCBs. UNIX uses inode numbers, and NTFS uses a master file

table.

o The File Control Block, FCB, (per file) containing details about ownership, size,

permissions, dates, etc. UNIX stores this information in inodes, and NTFS in the

master file table as a relational database structure.

138

Fig: A typical file-control block.

 There are also several key data structures stored in memory:

o An in-memory mount table.

o An in-memory directory cache of recently accessed directory information.

o A system-wide open file table, containing a copy of the FCB for every currently

open file in the system, as well as some other related information.

o A per-process open file table, containing a pointer to the system open file table

as well as some other information. (For example the current file position pointer

may be either here or in the system file table, depending on the implementation

and whether the file is being shared or not.)

 Figure below illustrates some of the interactions of file system components when files are

created and/or used:

o When a new file is created, a new FCB is allocated and filled out with important

information regarding the new file. The appropriate directory is modified with the

new file name and FCB information.

o When a file is accessed during a program, the open() system call reads in the

FCB information from disk, and stores it in the system-wide open file table. An

entry is added to the per-process open file table referencing the system-wide table,

and an index into the per-process table is returned by the open() system call.

UNIX refers to this index as a file descriptor, and Windows refers to it as a file

handle.

o If another process already has a file open when a new request comes in for the

same file, and it is sharable, then a counter in the system-wide table is

incremented and the per-process table is adjusted to point to the existing entry in

the system-wide table.

o When a file is closed, the per-process table entry is freed, and the counter in the

system-wide table is decremented. If that counter reaches zero, then the system

wide table is also freed. Any data currently stored in memory cache for this file is

written out to disk if necessary.

139

Fig: In-memory file-system structures. (a) File open. (b) File read.

Partitions and Mounting

 Physical disks are commonly divided into smaller units called partitions. They can also

be combined into larger units, but that is most commonly done for RAID installations and

is left for later chapters.

 Partitions can either be used as raw devices (with no structure imposed upon them), or

they can be formatted to hold a file system (i.e. populated with FCBs and initial directory

structures as appropriate.) Raw partitions are generally used for swap space, and may

also be used for certain programs such as databases that choose to manage their own disk

storage system. Partitions containing file systems can generally only be accessed using

the file system structure by ordinary users, but can often be accessed as a raw device also

by root.

 The boot block is accessed as part of a raw partition, by the boot program prior to any

operating system being loaded. Modern boot programs understand multiple OSes and file

system formats, and can give the user a choice of which of several available systems to

boot.

 The root partition contains the OS kernel and at least the key portions of the OS needed

to complete the boot process. At boot time the root partition is mounted, and control is

transferred from the boot program to the kernel found there. (Older systems required that

the root partition lie completely within the first 1024 cylinders of the disk, because that

was as far as the boot program could reach. Once the kernel had control, then it could

access partitions beyond the 1024 cylinder boundary.)

 Continuing with the boot process, additional file systems get mounted, adding their

information into the appropriate mount table structure. As a part of the mounting process

the file systems may be checked for errors or inconsistencies, either because they are

flagged as not having been closed properly the last time they were used, or just for

general principals. File systems may be mounted either automatically or manually. In

140

UNIX a mount point is indicated by setting a flag in the in-memory copy of the inode, so

all future references to that inode get re-directed to the root directory of the mounted file

system.

Virtual File Systems

 Virtual File Systems, VFS, provide a common interface to multiple different file system

types. In addition, it provides for a unique identifier (vnode) for files across the entire

space, including across all file systems of different types. (UNIX inodes are unique only

across a single file system, and certainly do not carry across networked file systems.)

 The VFS in Linux is based upon four key object types:

o The inode object, representing an individual file

o The file object, representing an open file.

o The superblock object, representing a file system.

o The dentry object, representing a directory entry.

 Linux VFS provides a set of common functionalities for each file system, using function

pointers accessed through a table. The same functionality is accessed through the same

table position for all file system types, though the actual functions pointed to by the

pointers may be file system-specific. See /usr/include/linux/fs.h for full details. Common

operations provided include open(), read(), write(), and mmap().

Fig: Schematic view of a virtual file system

Directory Implementation

Directories need to be fast to search, insert, and delete, with a minimum of wasted disk space.

Linear List

141

 A linear list is the simplest and easiest directory structure to set up, but it does have some

drawbacks.

 Finding a file (or verifying one does not already exist upon creation) requires a linear

search.

 Deletions can be done by moving all entries, flagging an entry as deleted, or by moving

the last entry into the newly vacant position.

 Sorting the list makes searches faster, at the expense of more complex insertions and

deletions.

 A linked list makes insertions and deletions into a sorted list easier, with overhead for the

links.

 More complex data structures, such as B-trees, could also be considered.

Hash Table

 A hash table can also be used to speed up searches.

 Hash tables are generally implemented in addition to a linear or other structure

Allocation Methods

There are three major methods of storing files on disks:

 contiguous,

 linked, and

 indexed.

Contiguous Allocation

 Contiguous Allocation requires that all blocks of a file be kept together contiguously.

 Performance is very fast, because reading successive blocks of the same file generally

requires no movement of the disk heads, or at most one small step to the next adjacent

cylinder.

 Storage allocation involves the same issues discussed earlier for the allocation of

contiguous blocks of memory (first fit, best fit, fragmentation problems, etc.) The

distinction is that the high time penalty required for moving the disk heads from spot to

spot may now justify the benefits of keeping files contiguously when possible.

 (Even file systems that do not by default store files contiguously can benefit from certain

utilities that compact the disk and make all files contiguous in the process.)

 Problems can arise when files grow, or if the exact size of a file is unknown at creation

time:

o Over-estimation of the file's final size increases external fragmentation and wastes

disk space.

o Under-estimation may require that a file be moved or a process aborted if the file

grows beyond its originally allocated space.

142

o If a file grows slowly over a long time period and the total final space must be

allocated initially, then a lot of space becomes unusable before the file fills the

space.

 A variation is to allocate file space in large contiguous chunks, called extents. When a

file outgrows its original extent, then an additional one is allocated. (For example an

extent may be the size of a complete track or even cylinder, aligned on an appropriate

track or cylinder boundary.) The high-performance files system Veritas uses extents to

optimize performance.

Fig: Contiguous allocation of disk space.

Linked Allocation

 Disk files can be stored as linked lists, with the expense of the storage space consumed

by each link. (E.g. a block may be 508 bytes instead of 512.)

 Linked allocation involves no external fragmentation, does not require pre-known file

sizes, and allows files to grow dynamically at any time.

 Unfortunately linked allocation is only efficient for sequential access files, as random

access requires starting at the beginning of the list for each new location access.

 Allocating clusters of blocks reduces the space wasted by pointers, at the cost of internal

fragmentation.

 Another big problem with linked allocation is reliability if a pointer is lost or damaged.

Doubly linked lists provide some protection, at the cost of additional overhead and

wasted space.

143

Fig: Linked allocation of disk space.

 The File Allocation Table, FAT, used by DOS is a variation of linked allocation, where

all the links are stored in a separate table at the beginning of the disk. The benefit of this

approach is that the FAT table can be cached in memory, greatly improving random

access speeds.

Fig: File-allocation table

Indexed Allocation

 Indexed Allocation combines all of the indexes for accessing each file into a common

block (for that file), as opposed to spreading them all over the disk or storing them in a

FAT table.

144

Fig: Indexed allocation of disk space

 Some disk space is wasted (relative to linked lists or FAT tables) because an entire

index block must be allocated for each file, regardless of how many data blocks the file

contains. This leads to questions of how big the index block should be, and how it should

be implemented. There are several approaches:

o Linked Scheme - An index block is one disk block, which can be read and

written in a single disk operation. The first index block contains some header

information, the first N block addresses, and if necessary a pointer to additional

linked index blocks.

o Multi-Level Index - The first index block contains a set of pointers to secondary

index blocks, which in turn contain pointers to the actual data blocks.

o Combined Scheme - This is the scheme used in UNIX inodes, in which the first

12 or so data block pointers are stored directly in the inode, and then singly,

doubly, and triply indirect pointers provide access to more data blocks as needed.

(See below.) The advantage of this scheme is that for small files (which many

are), the data blocks are readily accessible (up to 48K with 4K block sizes); files

up to about 4144K (using 4K blocks) are accessible with only a single indirect

block (which can be cached), and huge files are still accessible using a relatively

small number of disk accesses (larger in theory than can be addressed by a 32-bit

address, which is why some systems have moved to 64-bit file pointers.)

145

Fig: The UNIX inode

Performance

 The optimal allocation method is different for sequential access files than for random

access files, and is also different for small files than for large files.

 Some systems support more than one allocation method, which may require specifying

how the file is to be used (sequential or random access) at the time it is allocated. Such

systems also provide conversion utilities.

 Some systems have been known to use contiguous access for small files, and

automatically switch to an indexed scheme when file sizes surpass a certain threshold.

 And of course some systems adjust their allocation schemes (e.g. block sizes) to best

match the characteristics of the hardware for optimum performance.

Free-Space Management

Another important aspect of disk management is keeping track of and allocating free space.

Bit Vector

 One simple approach is to use a bit vector, in which each bit represents a disk block, set

to 1 if free or 0 if allocated.

 Fast algorithms exist for quickly finding contiguous blocks of a given size

 The down side is that a 40GB disk requires over 5MB just to store the bitmap. (For

example.)

Linked List

 A linked list can also be used to keep track of all free blocks.

146

 Traversing the list and/or finding a contiguous block of a given size are not easy, but

fortunately are not frequently needed operations. Generally the system just adds and

removes single blocks from the beginning of the list.

 The FAT table keeps track of the free list as just one more linked list on the table.

Fig: Linked free-space list on disk.

Grouping

A variation on linked list free lists is to use links of blocks of indices of free blocks. If a block

holds up to N addresses, then the first block in the linked-list contains up to N-1 addresses of free

blocks and a pointer to the next block of free addresses.

Counting

When there are multiple contiguous blocks of free space then the system can keep track of the

starting address of the group and the number of contiguous free blocks. As long as the average

length of a contiguous group of free blocks is greater than two this offers a savings in space

needed for the free list. (Similar to compression techniques used for graphics images when a

group of pixels all the same color is encountered.)

Space Maps

 Sun's ZFS file system was designed for HUGE numbers and sizes of files, directories,

and even file systems.

147

 The resulting data structures could be VERY inefficient if not implemented carefully. For

example, freeing up a 1 GB file on a 1 TB file system could involve updating thousands

of blocks of free list bit maps if the file was spread across the disk.

 ZFS uses a combination of techniques, starting with dividing the disk up into (hundreds

of) metaslabs of a manageable size, each having their own space map.

 Free blocks are managed using the counting technique, but rather than write the

information to a table, it is recorded in a log-structured transaction record. Adjacent free

blocks are also coalesced into a larger single free block.

 An in-memory space map is constructed using a balanced tree data structure, constructed

from the log data.

 The combination of the in-memory tree and the on-disk log provide for very fast and

efficient management of these very large files and free blocks.

Efficiency and Performance

Efficiency

 UNIX pre-allocates inodes, which occupies space even before any files are created.

 UNIX also distributes inodes across the disk, and tries to store data files near their inode,

to reduce the distance of disk seeks between the inodes and the data.

 Some systems use variable size clusters depending on the file size.

 The more data that is stored in a directory (e.g. last access time), the more often the

directory blocks have to be re-written.

 As technology advances, addressing schemes have had to grow as well.

o Sun's ZFS file system uses 128-bit pointers, which should theoretically never

need to be expanded. (The mass required to store 2^128 bytes with atomic

storage would be at least 272 trillion kilograms!)

 Kernel table sizes used to be fixed, and could only be changed by rebuilding the kernels.

Modern tables are dynamically allocated, but that requires more complicated algorithms

for accessing them.

Performance

 Disk controllers generally include on-board caching. When a seek is requested, the heads

are moved into place, and then an entire track is read, starting from whatever sector is

currently under the heads (reducing latency.) The requested sector is returned and the

unrequested portion of the track is cached in the disk's electronics.

 Some OSes cache disk blocks they expect to need again in a buffer cache.

 A page cache connected to the virtual memory system is actually more efficient as

memory addresses do not need to be converted to disk block addresses and back again.

 Some systems (Solaris, Linux, Windows 2000, NT, XP) use page caching for both

process pages and file data in a unified virtual memory.

148

 Figures below show the advantages of the unified buffer cache found in some versions of

UNIX and Linux - Data does not need to be stored twice, and problems of inconsistent

buffer information are avoided.

Figure : I/O without a unified buffer cache.

Figure 12.12 - I/O using a unified buffer cache.

 Page replacement strategies can be complicated with a unified cache, as one needs to

decide whether to replace process or file pages, and how many pages to guarantee to each

category of pages. Solaris, for example, has gone through many variations, resulting in

priority paging giving process pages priority over file I/O pages, and setting limits so that

neither can knock the other completely out of memory.

 Another issue affecting performance is the question of whether to implement

synchronous writes or asynchronous writes. Synchronous writes occur in the order in

which the disk subsystem receives them, without caching; Asynchronous writes are

149

cached, allowing the disk subsystem to schedule writes in a more efficient order (See

Chapter 12.) Metadata writes are often done synchronously. Some systems support flags

to the open call requiring that writes be synchronous, for example for the benefit of

database systems that require their writes be performed in a required order.

 The type of file access can also have an impact on optimal page replacement policies. For

example, LRU is not necessarily a good policy for sequential access files. For these types

of files progression normally goes in a forward direction only, and the most recently used

page will not be needed again until after the file has been rewound and re-read from the

beginning, (if it is ever needed at all.) On the other hand, we can expect to need the next

page in the file fairly soon. For this reason sequential access files often take advantage of

two special policies:

o Free-behind frees up a page as soon as the next page in the file is requested, with

the assumption that we are now done with the old page and won't need it again for

a long time.

o Read-ahead reads the requested page and several subsequent pages at the same

time, with the assumption that those pages will be needed in the near future. This

is similar to the track caching that is already performed by the disk controller,

except it saves the future latency of transferring data from the disk controller

memory into motherboard main memory.

 The caching system and asynchronous writes speed up disk writes considerably, because

the disk subsystem can schedule physical writes to the disk to minimize head movement

and disk seek times. Reads, on the other hand, must be done more synchronously in spite

of the caching system, with the result that disk writes can counter-intuitively be much

faster on average than disk reads.

Recovery

Consistency Checking

 The storing of certain data structures (e.g. directories and inodes) in memory and the

caching of disk operations can speed up performance, but what happens in the result of a

system crash? All volatile memory structures are lost, and the information stored on the

hard drive may be left in an inconsistent state.

 A Consistency Checker (fsck in UNIX, chkdsk or scandisk in Windows) is often run at

boot time or mount time, particularly if a file system was not closed down properly.

Some of the problems that these tools look for include:

o Disk blocks allocated to files and also listed on the free list.

o Disk blocks neither allocated to files nor on the free list.

o Disk blocks allocated to more than one file.

o The number of disk blocks allocated to a file inconsistent with the file's stated

size.

o Properly allocated files / inodes which do not appear in any directory entry.

150

o Link counts for an inode not matching the number of references to that inode in

the directory structure.

o Two or more identical file names in the same directory.

o Illegally linked directories, e.g. cyclical relationships where those are not allowed,

or files/directories that are not accessible from the root of the directory tree.

o Consistency checkers will often collect questionable disk blocks into new files

with names such as chk00001.dat. These files may contain valuable information

that would otherwise be lost, but in most cases they can be safely deleted, (

returning those disk blocks to the free list.)

 UNIX caches directory information for reads, but any changes that affect space allocation

or metadata changes are written synchronously, before any of the corresponding data

blocks are written to.

Log-Structured File Systems

 Log-based transaction-oriented (a.k.a. journaling) file systems borrow techniques

developed for databases, guaranteeing that any given transaction either completes

successfully or can be rolled back to a safe state before the transaction commenced:

o All metadata changes are written sequentially to a log.

o A set of changes for performing a specific task (e.g. moving a file) is a

transaction.

o As changes are written to the log they are said to be committed, allowing the

system to return to its work.

o In the meantime, the changes from the log are carried out on the actual file

system, and a pointer keeps track of which changes in the log have been

completed and which have not yet been completed.

o When all changes corresponding to a particular transaction have been completed,

that transaction can be safely removed from the log.

o At any given time, the log will contain information pertaining to uncompleted

transactions only, e.g. actions that were committed but for which the entire

transaction has not yet been completed.

 From the log, the remaining transactions can be completed,

 or if the transaction was aborted, then the partially completed changes can

be undone.

Other Solutions

 Sun's ZFS and Network Appliance's WAFL file systems take a different approach to file

system consistency.

 No blocks of data are ever over-written in place. Rather the new data is written into fresh

new blocks, and after the transaction is complete, the metadata (data block pointers) is

updated to point to the new blocks.

o The old blocks can then be freed up for future use.

151

o Alternatively, if the old blocks and old metadata are saved, then a snapshot of the

system in its original state is preserved. This approach is taken by WAFL.

 ZFS combines this with check-summing of all metadata and data blocks, and RAID, to

ensure that no inconsistencies are possible, and therefore ZFS does not incorporate a

consistency checker.

Backup and Restore

 In order to recover lost data in the event of a disk crash, it is important to conduct

backups regularly.

 Files should be copied to some removable medium, such as magnetic tapes, CDs, DVDs,

or external removable hard drives.

 A full backup copies every file on a file system.

 Incremental backups copy only files which have changed since some previous time.

 A combination of full and incremental backups can offer a compromise between full

recoverability, the number and size of backup tapes needed, and the number of tapes that

need to be used to do a full restore. For example, one strategy might be:

o At the beginning of the month do a full backup.

o At the end of the first and again at the end of the second week, backup all files

which have changed since the beginning of the month.

o At the end of the third week, backup all files that have changed since the end of

the second week.

o Every day of the month not listed above, do an incremental backup of all files that

have changed since the most recent of the weekly backups described above.

 Backup tapes are often reused, particularly for daily backups, but there are limits to how

many times the same tape can be used.

 Every so often a full backup should be made that is kept "forever" and not overwritten.

 Backup tapes should be tested, to ensure that they are readable!

 For optimal security, backup tapes should be kept off-premises, so that a fire or burglary

cannot destroy both the system and the backups. There are companies (e.g. Iron

Mountain) that specialize in the secure off-site storage of critical backup information.

 Keep your backup tapes secure - The easiest way for a thief to steal all your data is to

simply pocket your backup tapes!

 Storing important files on more than one computer can be an alternate though less

reliable form of backup.

 Note that incremental backups can also help users to get back a previous version of a file

that they have since changed in some way.

 Beware that backups can help forensic investigators recover e-mails and other files that

users had though they had deleted!

152

UNIT V

5.1 I/O Systems

5.1.1 Overview

 Management of I/O devices is a very important part of the operating system - so
important and so varied that entire I/O subsystems are devoted to its operation. (Consider
the range of devices on a modern computer, from mice, keyboards, disk drives, display
adapters, USB devices, network connections, audio I/O, printers, special devices for the
handicapped, and many special-purpose peripherals.)

 I/O Subsystems must contend with two (conflicting?) trends: (1) The gravitation
towards standard interfaces for a wide range of devices, making it easier to add newly
developed devices to existing systems, and (2) the development of entirely new types of
devices, for which the existing standard interfaces are not always easy to apply.

 Device drivers are modules that can be plugged into an OS to handle a particular device
or category of similar devices.

5.1.2 I/O Hardware

 I/O devices can be roughly categorized as storage, communications, user-interface, and
other

 Devices communicate with the computer via signals sent over wires or through the air.
 Devices connect with the computer via ports, e.g. a serial or parallel port.
 A common set of wires connecting multiple devices is termed a bus.

o Buses include rigid protocols for the types of messages that can be sent across the
bus and the procedures for resolving contention issues.

o Figure 13.1 below illustrates three of the four bus types commonly found in a
modern PC:

1. The PCI bus connects high-speed high-bandwidth devices to the memory
subsystem (and the CPU.)

2. The expansion bus connects slower low-bandwidth devices, which
typically deliver data one character at a time (with buffering.)

3. The SCSI bus connects a number of SCSI devices to a common SCSI
controller.

4. A daisy-chain bus, (not shown) is when a string of devices is connected
to each other like beads on a chain, and only one of the devices is directly
connected to the host.

153

Fig: A Typical PCI Bus Structure

 One way of communicating with devices is through registers associated with each port.
Registers may be one to four bytes in size, and may typically include (a subset of) the
following four:

1. The data-in register is read by the host to get input from the device.
2. The data-out register is written by the host to send output.
3. The status register has bits read by the host to ascertain the status of the device,

such as idle, ready for input, busy, error, transaction complete, etc.
4. The control register has bits written by the host to issue commands or to change

settings of the device such as parity checking, word length, or full- versus half-
duplex operation.

 Above Figure shows some of the most common I/O port address ranges.

154

 Another technique for communicating with devices is memory-mapped I/O.
o In this case a certain portion of the processor's address space is mapped to the

device, and communications occur by reading and writing directly to/from those
memory areas.

o Memory-mapped I/O is suitable for devices which must move large quantities of
data quickly, such as graphics cards.

o Memory-mapped I/O can be used either instead of or more often in combination
with traditional registers. For example, graphics cards still use registers for
control information such as setting the video mode.

o A potential problem exists with memory-mapped I/O, if a process is allowed to
write directly to the address space used by a memory-mapped I/O device.

o (Note: Memory-mapped I/O is not the same thing as direct memory access,
DMA. See section 13.2.3 below.)

5.1.2.1 Polling

 One simple means of device handshaking involves polling:
1. The host repeatedly checks the busy bit on the device until it becomes clear.
2. The host writes a byte of data into the data-out register, and sets the write bit in

the command register (in either order.)
3. The host sets the command ready bit in the command register to notify the device

of the pending command.
4. When the device controller sees the command-ready bit set, it first sets the busy

bit.
5. Then the device controller reads the command register, sees the write bit set,

reads the byte of data from the data-out register, and outputs the byte of data.
6. The device controller then clears the error bit in the status register, the command-

ready bit, and finally clears the busy bit, signaling the completion of the
operation.

 Polling can be very fast and efficient, if both the device and the controller are fast and if
there is significant data to transfer. It becomes inefficient, however, if the host must wait
a long time in the busy loop waiting for the device, or if frequent checks need to be made
for data that is infrequently there.

5.1.2.2 Interrupts

 Interrupts allow devices to notify the CPU when they have data to transfer or when an
operation is complete, allowing the CPU to perform other duties when no I/O transfers
need its immediate attention.

 The CPU has an interrupt-request line that is sensed after every instruction.
o A device's controller raises an interrupt by asserting a signal on the

interrupt request line.
o The CPU then performs a state save, and transfers control to

the interrupt handler routine at a fixed address in memory. (The
CPU catches the interrupt and dispatches the interrupt handler.)

o The interrupt handler determines the cause of the interrupt, performs
the necessary processing, performs a state restore, and executes

155

a return from interrupt instruction to return control to the CPU. (The
interrupt handler clears the interrupt by servicing the device.)

 (Note that the state restored does not need to be the same state
as the one that was saved when the interrupt went off. See
below for an example involving time-slicing.)

 Below Figure illustrates the interrupt-driven I/O procedure:

Fig: Interrupt Driven I/O Cycle

 The above description is adequate for simple interrupt-driven I/O, but there are three

needs in modern computing which complicate the picture:

1. The need to defer interrupt handling during critical processing,

2. The need to determine which interrupt handler to invoke, without having to poll all

devices to see which one needs attention, and

156

3. The need for multi-level interrupts, so the system can differentiate between high- and

low-priority interrupts for proper response.

 These issues are handled in modern computer architectures with interrupt-controller

hardware.

o Most CPUs now have two interrupt-request lines: One that is non-maskable for critical

error conditions and one that is maskable, that the CPU can temporarily ignore during

critical processing.

o The interrupt mechanism accepts an address, which is usually one of a small set of

numbers for an offset into a table called the interrupt vector. This table (usually located

at physical address zero ?) holds the addresses of routines prepared to process specific

interrupts.

o The number of possible interrupt handlers still exceeds the range of defined interrupt

numbers, so multiple handlers can be interrupt chained. Effectively the addresses held in

the interrupt vectors are the head pointers for linked-lists of interrupt handlers.

o Figure below shows the Intel Pentium interrupt vector. Interrupts 0 to 31 are non-

maskable and reserved for serious hardware and other errors. Maskable interrupts,

including normal device I/O interrupts begin at interrupt 32.

o Modern interrupt hardware also supports interrupt priority levels, allowing systems to

mask off only lower-priority interrupts while servicing a high-priority interrupt, or

conversely to allow a high-priority signal to interrupt the processing of a low-priority

one.

157

 At boot time the system determines which devices are present, and loads the appropriate

handler addresses into the interrupt table.

 During operation, devices signal errors or the completion of commands via interrupts.

 Exceptions, such as dividing by zero, invalid memory accesses, or attempts to access

kernel mode instructions can be signaled via interrupts.

 Time slicing and context switches can also be implemented using the interrupt

mechanism.

o The scheduler sets a hardware timer before transferring control over to a user process.

o When the timer raises the interrupt request line, the CPU performs a state-save, and

transfers control over to the proper interrupt handler, which in turn runs the scheduler.

o The scheduler does a state-restore of a different process before resetting the timer and

issuing the return-from-interrupt instruction.

 A similar example involves the paging system for virtual memory - A page fault

causes an interrupt, which in turn issues an I/O request and a context switch as

described above, moving the interrupted process into the wait queue and selecting a

different process to run. When the I/O request has completed (i.e. when the requested

page has been loaded up into physical memory), then the device interrupts, and the

interrupt handler moves the process from the wait queue into the ready queue, (or

depending on scheduling algorithms and policies, may go ahead and context switch it

back onto the CPU.)

 System calls are implemented via software interrupts, a.k.a. traps. When a (library)

program needs work performed in kernel mode, it sets command information and

possibly data addresses in certain registers, and then raises a software interrupt. (E.g.

21 hex in DOS.) The system does a state save and then calls on the proper interrupt

handler to process the request in kernel mode. Software interrupts generally have low

priority, as they are not as urgent as devices with limited buffering space.

 Interrupts are also used to control kernel operations, and to schedule activities for

optimal performance. For example, the completion of a disk read operation involves

two interrupts:

o A high-priority interrupt acknowledges the device completion, and issues the

next disk request so that the hardware does not sit idle.

o A lower-priority interrupt transfers the data from the kernel memory space to

the user space, and then transfers the process from the waiting queue to the

ready queue.

158

o The Solaris OS uses a multi-threaded kernel and priority threads to assign

different threads to different interrupt handlers. This allows for the

"simultaneous" handling of multiple interrupts, and the assurance that high-

priority interrupts will take precedence over low-priority ones and over user

processes.

5.1..2.3 Direct Memory Access

 For devices that transfer large quantities of data (such as disk controllers), it is wasteful

to tie up the CPU transferring data in and out of registers one byte at a time.

 Instead this work can be off-loaded to a special processor, known as the Direct Memory

Access, DMA, Controller.

 The host issues a command to the DMA controller, indicating the location where the data

is located, the location where the data is to be transferred to, and the number of bytes of

data to transfer. The DMA controller handles the data transfer, and then interrupts the

CPU when the transfer is complete.

 A simple DMA controller is a standard component in modern PCs, and many bus-

mastering I/O cards contain their own DMA hardware.

 Handshaking between DMA controllers and their devices is accomplished through two

wires called the DMA-request and DMA-acknowledge wires.

 While the DMA transfer is going on the CPU does not have access to the PCI bus (

including main memory), but it does have access to its internal registers and primary and

secondary caches.

 DMA can be done in terms of either physical addresses or virtual addresses that are

mapped to physical addresses. The latter approach is known as Direct Virtual Memory

Access, DVMA, and allows direct data transfer from one memory-mapped device to

another without using the main memory chips.

 Direct DMA access by user processes can speed up operations, but is generally forbidden

by modern systems for security and protection reasons. (I.e. DMA is a kernel-mode

operation.)

 Figure below illustrates the DMA process.

159

Fig: Steps in a DMA Transfer

5.3 Application I/O Interface

 User application access to a wide variety of different devices is accomplished through
layering, and through encapsulating all of the device-specific code into device drivers,
while application layers are presented with a common interface for all (or at least large
general categories of) devices.

160

 Devices differ on many different dimensions, as outlined in Figure below:

Fig: Characteristics of I/O devices

 Most devices can be characterized as either block I/O, character I/O, memory mapped file
access, or network sockets. A few devices are special, such as time-of-day clock and the
system timer.

 Most OSes also have an escape, or back door, which allows applications to send
commands directly to device drivers if needed. In UNIX this is the ioctl() system call (
I/O Control). Ioctl() takes three arguments - The file descriptor for the device driver
being accessed, an integer indicating the desired function to be performed, and an address
used for communicating or transferring additional information.

5.1.3.1 Block and Character Devices

 Block devices are accessed a block at a time, and are indicated by a "b" as the first
character in a long listing on UNIX systems. Operations supported include read(), write(
), and seek().

o Accessing blocks on a hard drive directly (without going through the file system
structure) is called raw I/O, and can speed up certain operations by bypassing the
buffering and locking normally conducted by the OS. (It then becomes the
application's responsibility to manage those issues.)

o A new alternative is direct I/O, which uses the normal file system access, but
which disables buffering and locking operations.

 Memory-mapped file I/O can be layered on top of block-device drivers.
o Rather than reading in the entire file, it is mapped to a range of memory

addresses, and then paged into memory as needed using the virtual memory
system.

o Access to the file is then accomplished through normal memory accesses, rather
than through read() and write() system calls. This approach is commonly used
for executable program code.

161

 Character devices are accessed one byte at a time, and are indicated by a "c" in UNIX
long listings. Supported operations include get() and put(), with more advanced
functionality such as reading an entire line supported by higher-level library routines.

5.1.3.2 Network Devices

 Because network access is inherently different from local disk access, most systems
provide a separate interface for network devices.

 One common and popular interface is the socket interface, which acts like a cable or
pipeline connecting two networked entities. Data can be put into the socket at one end,
and read out sequentially at the other end. Sockets are normally full-duplex, allowing for
bi-directional data transfer.

 The select() system call allows servers (or other applications) to identify sockets which
have data waiting, without having to poll all available sockets.

5.1.3.3 Clocks and Timers

 Three types of time services are commonly needed in modern systems:
o Get the current time of day.
o Get the elapsed time (system or wall clock) since a previous event.
o Set a timer to trigger event X at time T.

 Unfortunately time operations are not standard across all systems.
 A programmable interrupt timer, PIT can be used to trigger operations and to measure

elapsed time. It can be set to trigger an interrupt at a specific future time, or to trigger
interrupts periodically on a regular basis.

o The scheduler uses a PIT to trigger interrupts for ending time slices.
o The disk system may use a PIT to schedule periodic maintenance cleanup, such as

flushing buffers to disk.
o Networks use PIT to abort or repeat operations that are taking too long to

complete. I.e. resending packets if an acknowledgement is not received before the
timer goes off.

o More timers than actually exist can be simulated by maintaining an ordered list of
timer events, and setting the physical timer to go off when the next scheduled
event should occur.

 On most systems the system clock is implemented by counting interrupts generated by
the PIT. Unfortunately this is limited in its resolution to the interrupt frequency of the
PIT, and may be subject to some drift over time. An alternate approach is to provide
direct access to a high frequency hardware counter, which provides much higher
resolution and accuracy, but which does not support interrupts.

5.1.3.4 Blocking and Non-blocking I/O

 With blocking I/O a process is moved to the wait queue when an I/O request is made, and
moved back to the ready queue when the request completes, allowing other processes to
run in the meantime.

 With non-blocking I/O the I/O request returns immediately, whether the requested I/O
operation has (completely) occurred or not. This allows the process to check for
available data without getting hung completely if it is not there.

162

 One approach for programmers to implement non-blocking I/O is to have a multi-
threaded application, in which one thread makes blocking I/O calls (say to read a
keyboard or mouse), while other threads continue to update the screen or perform other
tasks.

 A subtle variation of the non-blocking I/O is the asynchronous I/O, in which the I/O
request returns immediately allowing the process to continue on with other tasks, and
then the process is notified (via changing a process variable, or a software interrupt, or a
callback function) when the I/O operation has completed and the data is available for
use. (The regular non-blocking I/O returns immediately with whatever results are

available, but does not complete the operation and notify the process later.)

Fig: Two I/O methods: (a) synchronous and (b) asynchronous.

5.1.4 Kernel I/O Subsystem

5.1..4.1 I/O Scheduling

 Scheduling I/O requests can greatly improve overall efficiency. Priorities can also play a
part in request scheduling.

 The classic example is the scheduling of disk accesses, as discussed in detail in chapter
12.

 Buffering and caching can also help, and can allow for more flexible scheduling options.
 On systems with many devices, separate request queues are often kept for each device:

163

5.1.4.2

Buffering

 Buffering of I/O is performed for (at least) 3 major reasons:

1. Speed differences between two devices. (See Figure 13.10 below.) A slow device may

write data into a buffer, and when the buffer is full, the entire buffer is sent to the fast

device all at once. So that the slow device still has somewhere to write while this is going

on, a second buffer is used, and the two buffers alternate as each becomes full. This is

known as double buffering. (Double buffering is often used in (animated) graphics, so

that one screen image can be generated in a buffer while the other (completed) buffer is

displayed on the screen. This prevents the user from ever seeing any half-finished screen

images.)

2. Data transfer size differences. Buffers are used in particular in networking systems to

break messages up into smaller packets for transfer, and then for re-assembly at the

receiving side.

3. To support copy semantics. For example, when an application makes a request for a disk

write, the data is copied from the user's memory area into a kernel buffer. Now the

application can change their copy of the data, but the data which eventually gets written

out to

disk is

the

version

of the

data at

the time

the write

request

was

made.

164

Fig: Sun Enterprise 6000 device-transfer rates (logarithmic)

5.1.4.3 Caching

 Caching involves keeping a copy of data in a faster-access location than where the data is

normally stored.

 Buffering and caching are very similar, except that a buffer may hold the only copy of a

given data item, whereas a cache is just a duplicate copy of some other data stored

elsewhere.

 Buffering and caching go hand-in-hand, and often the same storage space may be used

for both purposes. For example, after a buffer is written to disk, then the copy in memory

can be used as a cached copy, (until that buffer is needed for other purposes.)

5.1.4.4 Spooling and Device Reservation

 A spool (Simultaneous Peripheral Operations On-Line) buffers data for (peripheral)

devices such as printers that cannot support interleaved data streams.

 If multiple processes want to print at the same time, they each send their print data to files

stored in the spool directory. When each file is closed, then the application sees that print

job as complete, and the print scheduler sends each file to the appropriate printer one at a

time.

 Support is provided for viewing the spool queues, removing jobs from the queues,

moving jobs from one queue to another queue, and in some cases changing the priorities

of jobs in the queues.

 Spool queues can be general (any laser printer) or specific (printer number 42.)

165

 OSes can also provide support for processes to request / get exclusive access to a

particular device, and/or to wait until a device becomes available.

5.1.4.5 Error Handling

 I/O requests can fail for many reasons, either transient (buffers overflow) or permanent (

disk crash).

 I/O requests usually return an error bit (or more) indicating the problem. UNIX systems

also set the global variable errno to one of a hundred or so well-defined values to indicate

the specific error that has occurred. (See errno.h for a complete listing, or man errno.)

 Some devices, such as SCSI devices, are capable of providing much more detailed

information about errors, and even keep an on-board error log that can be requested by

the host.

5.1.4.6 I/O Protection

 The I/O system must protect against either accidental or deliberate erroneous I/O.

 User applications are not allowed to perform I/O in user mode - All I/O requests are

handled through system calls that must be performed in kernel mode.

 Memory mapped areas and I/O ports must be protected by the memory management

system, but access to these areas cannot be totally denied to user programs. (Video

games and some other applications need to be able to write directly to video memory for

optimal performance for example.) Instead the memory protection system restricts access

so that only one process at a time can access particular parts of memory, such as the

portion of the screen memory corresponding to a particular window.

166

Fig: Use of a system call to perform I/O.

5.1.4.7 Kernel Data Structures

 The kernel maintains a number of important data structures pertaining to the I/O system,
such as the open file table.

 These structures are object-oriented, and flexible to allow access to a wide variety of I/O
devices through a common interface. (See Figure below.)

 Windows NT carries the object-orientation one step further, implementing I/O as a
message-passing system from the source through various intermediaries to the device.

167

Figure 13.12 - UNIX I/O kernel structure.

5.1.4.6 Kernel I/O Subsystem Summary

5.1.5 Transforming I/O Requests to Hardware Operations

 Users request data using file names, which must ultimately be mapped to specific blocks
of data from a specific device managed by a specific device driver.

 DOS uses the colon separator to specify a particular device (e.g. C:, LPT:, etc.)
 UNIX uses a mount table to map filename prefixes (e.g. /usr) to specific mounted

devices. Where multiple entries in the mount table match different prefixes of the
filename the one that matches the longest prefix is chosen. (e.g. /usr/home instead of /usr
where both exist in the mount table and both match the desired file.)

 UNIX uses special device files, usually located in /dev, to represent and access physical
devices directly.

o Each device file has a major and minor number associated with it, stored and
displayed where the file size would normally go.

o The major number is an index into a table of device drivers, and indicates which
device driver handles this device. (E.g. the disk drive handler.)

o The minor number is a parameter passed to the device driver, and indicates which
specific device is to be accessed, out of the many which may be handled by a
particular device driver. (e.g. a particular disk drive or partition.)

 A series of lookup tables and mappings makes the access of different devices flexible,
and somewhat transparent to users.

 Figure 13.13 illustrates the steps taken to process a (blocking) read request:

168

Fig: The life cycle of an I/O request.

5.1.6 STREAMS (Optional)

 The streams mechanism in UNIX provides a bi-directional pipeline between a user
process and a device driver, onto which additional modules can be added.

 The user process interacts with the stream head.
 The device driver interacts with the device end.
 Zero or more stream modules can be pushed onto the stream, using ioctl(). These

modules may filter and/or modify the data as it passes through the stream.
 Each module has a read queue and a write queue.
 Flow control can be optionally supported, in which case each module will buffer data

until the adjacent module is ready to receive it. Without flow control, data is passed along
as soon as it is ready.

 User processes communicate with the stream head using either read() and write() (or
putmsg() and getmsg() for message passing.)

 Streams I/O is asynchronous (non-blocking), except for the interface between the user
process and the stream head.

169

 The device driver must respond to interrupts from its device - If the adjacent module is
not prepared to accept data and the device driver's buffers are all full, then data is
typically dropped.

 Streams are widely used in UNIX, and are the preferred approach for device drivers. For
example, UNIX implements sockets using streams.

Figure 13.14 - The SREAMS structure.

5.1.7 Performance (Optional)

 The I/O system is a major factor in overall system performance, and can place heavy
loads on other major components of the system (interrupt handling, process switching,
memory access, bus contention, and CPU load for device drivers just to name a few.)

 Interrupt handling can be relatively expensive (slow), which causes programmed I/O to
be faster than interrupt-driven I/O when the time spent busy waiting is not excessive.

 Network traffic can also put a heavy load on the system. Consider for example the
sequence of events that occur when a single character is typed in a telnet session, as
shown in figure 13.15. (And the fact that a similar set of events must happen in reverse
to echo back the character that was typed.) Sun uses in-kernel threads for the telnet
daemon, increasing the supportable number of simultaneous telnet sessions from the
hundreds to the thousands.

170

Figure 13.15 - Intercomputer communications.

 Other systems use front-end processors to off-load some of the work of I/O processing
from the CPU. For example a terminal concentratorcan multiplex with hundreds of
terminals on a single port on a large computer.

 Several principles can be employed to increase the overall efficiency of I/O processing:
1. Reduce the number of context switches.
2. Reduce the number of times data must be copied.
3. Reduce interrupt frequency, using large transfers, buffering, and polling where

appropriate.
4. Increase concurrency using DMA.
5. Move processing primitives into hardware, allowing their operation to be

concurrent with CPU and bus operations.
6. Balance CPU, memory, bus, and I/O operations, so a bottleneck in one does not

idle all the others.

171

 The development of new I/O algorithms often follows a progression from application
level code to on-board hardware implementation, as shown in Figure 13.16. Lower-level
implementations are faster and more efficient, but higher-level ones are more flexible and
easier to modify. Hardware-level functionality may also be harder for higher-level
authorities (e.g. the kernel) to control.

Fig: Device functionality progression.

5.2 Security

The Security Problem

 Protection dealt with protecting files and other resources from accidental misuse by
cooperating users sharing a system, generally using the computer for normal purposes.

 Security deals with protecting systems from deliberate attacks, either internal or external,
from individuals intentionally attempting to steal information, damage information, or
otherwise deliberately wreak havoc in some manner.

 Some of the most common types of violations include:
o Breach of Confidentiality - Theft of private or confidential information, such as

credit-card numbers, trade secrets, patents, secret formulas, manufacturing
procedures, medical information, financial information, etc.

o Breach of Integrity - Unauthorized modification of data, which may have serious
indirect consequences. For example a popular game or other program's source
code could be modified to open up security holes on users systems before being
released to the public.

172

o Breach of Availability - Unauthorized destruction of data, often just for the "fun"
of causing havoc and for bragging rites. Vandalism of web sites is a common
form of this violation.

o Theft of Service - Unauthorized use of resources, such as theft of CPU cycles,
installation of daemons running an unauthorized file server, or tapping into the
target's telephone or networking services.

o Denial of Service, DOS - Preventing legitimate users from using the system, often
by overloading and overwhelming the system with an excess of requests for
service.

 One common attack is masquerading, in which the attacker pretends to be a trusted third
party. A variation of this is the man-in-the-middle, in which the attacker masquerades as
both ends of the conversation to two targets.

 A replay attack involves repeating a valid transmission. Sometimes this can be the entire
attack, (such as repeating a request for a money transfer), or other times the content of the
original message is replaced

with malicious content.

Figure - Standard security attacks.

173

 There are four levels at which a system must be protected:
1. Physical - The easiest way to steal data is to pocket the backup tapes. Also,

access to the root console will often give the user special privileges, such as
rebooting the system as root from removable media. Even general access to
terminals in a computer room offers some opportunities for an attacker, although
today's modern high-speed networking environment provides more and more
opportunities for remote attacks.

2. Human - There is some concern that the humans who are allowed access to a
system be trustworthy, and that they cannot be coerced into breaching security.
However more and more attacks today are made via social engineering, which
basically means fooling trustworthy people into accidentally breaching security.

 Phishing involves sending an innocent-looking e-mail or web site
designed to fool people into revealing confidential information. E.g. spam
e-mails pretending to be from e-Bay, PayPal, or any of a number of banks
or credit-card companies.

 Dumpster Diving involves searching the trash or other locations for
passwords that are written down. (Note: Passwords that are too hard to
remember, or which must be changed frequently are more likely to be
written down somewhere close to the user's station.)

 Password Cracking involves divining user’s passwords, either by
watching them type in their passwords, knowing something about them
like their pet's names, or simply trying all words in common dictionaries.
(Note: "Good" passwords should involve a minimum number of
characters, include non-alphabetical characters, and not appear in any
dictionary (in any language), and should be changed frequently. Note also
that it is proper etiquette to look away from the keyboard while someone
else is entering their password.)

3. Operating System - The OS must protect itself from security breaches, such as
runaway processes (denial of service), memory-access violations, stack overflow
violations, the launching of programs with excessive privileges, and many others.

4. Network - As network communications become ever more important and
pervasive in modern computing environments, it becomes ever more important to
protect this area of the system. (Both protecting the network itself from attack,
and protecting the local system from attacks coming in through the network.) This
is a growing area of concern as wireless communications and portable devices
become more and more prevalent.

Program Threats

 There are many common threats to modern systems. Only a few are discussed here.

Trojan Horse

 A Trojan Horse is a program that secretly performs some maliciousness in addition to its
visible actions.

 Some Trojan horses are deliberately written as such, and others are the result of
legitimate programs that have become infected with viruses, (see below.)

174

 One dangerous opening for Trojan horses is long search paths, and in particular paths
which include the current directory (“.”) as part of the path. If a dangerous program
having the same name as a legitimate program (or a common mis-spelling, such as "sl"
instead of "ls”) is placed anywhere on the path, then an unsuspecting user may be fooled
into running the wrong program by mistake.

 Another classic Trojan Horse is a login emulator, which records a users account name
and password, issues a "password incorrect" message, and then logs off the system. The
user then tries again (with a proper login prompt), logs in successfully, and doesn't realize
that their information has been stolen.

 Two solutions to Trojan Horses are to have the system print usage statistics on logouts,
and to require the typing of non-trappable key sequences such as Control-Alt-Delete in
order to log in. (This is why modern Windows systems require the Control-Alt-Delete
sequence to commence logging in, which cannot be emulated or caught by ordinary
programs. I.e. that key sequence always transfers control over to the operating system.)

 Spy ware is a version of a Trojan Horse that is often included in "free" software
downloaded off the Internet. Spy ware programs generate pop-up browser windows, and
may also accumulate information about the user and deliver it to some central site. (This
is an example of covert channels, in which surreptitious communications occur.) Another
common task of spyware is to send out spam e-mail messages, which then purportedly
come from the infected user.

Trap Door

 A Trap Door is when a designer or a programmer (or hacker) deliberately
inserts a security hole that they can use later to access the system.

 Because of the possibility of trap doors, once a system has been in an
untrustworthy state, that system can never be trusted again. Even the backup
tapes may contain a copy of some cleverly hidden back door.

 A clever trap door could be inserted into a compiler, so that any programs
compiled with that compiler would contain a security hole. This is especially
dangerous, because inspection of the code being compiled would not reveal any
problems.

Logic Bomb

 A Logic Bomb is code that is not designed to cause havoc all the time, but only
when a certain set of circumstances occurs, such as when a particular date or
time is reached or some other noticeable event.

 A classic example is the Dead-Man Switch, which is designed to check
whether a certain person (e.g. the author) is logging in every day, and if they
don't log in for a long time (presumably because they've been fired), then the
logic bomb goes off and either opens up security holes or causes other
problems.

Stack and Buffer Overflow

175

 This is a classic method of attack, which exploits bugs in system code that
allows buffers to overflow. Consider what happens in the following code, for
example, if argv[1] exceeds 256 characters:

o The strcpy command will overflow the buffer, overwriting
adjacent areas of memory.

o (The problem could be avoided using strncpy, with a limit of 255
characters copied plus room for the null byte.)

 #include
 #define BUFFER_SIZE 256

 int main(int argc, char * argv[])
 {
 char buffer[BUFFER_SIZE];

 if(argc < 2)
 return -1;
 else {
 strcpy(buffer, argv[1]);
 return 0;
 }
 }

Figure - C program with buffer-overflow condition.

 So how does overflowing the buffer cause a security breach? Well the first step is to
understand the structure of the stack in memory:

o The "bottom" of the stack is actually at a high memory address, and the
stack grows towards lower addresses.

o However the address of an array is the lowest address of the array, and
higher array elements extend to higher addresses. (I.e. an array "grows"
towards the bottom of the stack.

o In particular, writing past the top of an array, as occurs when a buffer
overflows with too much input data, can eventually overwrite the return
address, effectively changing where the program jumps to when it returns.

Figure- The layout for a typical stack frame.

176

 Now that we know how to change where the program returns to by overflowing the
buffer, the second step is to insert some nefarious code, and then get the program to jump
to our inserted code.

 Our only opportunity to enter code is via the input into the buffer, which means there isn't
room for very much. One of the simplest and most obvious approaches is to insert the
code for "exec (/bin/sh)". To do this requires compiling a program that contains this
instruction, and then using an assembler or debugging tool to extract the minimum extent
that includes the necessary instructions.

 The bad code is then padded with as many extra bytes as are needed to overflow the
buffer to the correct extent, and the address of the buffer inserted into the return address
location. (Note, however, that neither the bad code nor the padding can contain null
bytes, which would terminate the strcpy.)

 The resulting block of information is provided as "input", copied into the buffer by the
original program, and then the return statement causes control to jump to the location of
the buffer and start executing the code to launch a shell.

Figure - Hypothetical stack frame for Figure 15.2, (a) before and (b) after.

 Unfortunately famous hacks such as the buffer overflow attack are well published and
well known, and it doesn't take a lot of skill to follow the instructions and start attacking
lots of systems until the law of averages eventually works out. (Script Kiddies are those
hackers with only rudimentary skills of their own but the ability to copy the efforts of
others.)

 Fortunately modern hardware now includes a bit in the page tables to mark certain pages
as non-executable. In this case the buffer-overflow attack would work up to a point, but
as soon as it "returns" to an address in the data space and tries executing statements there,
an exception would be thrown crashing the program.

177

Viruses

 A virus is a fragment of code embedded in an otherwise legitimate program, designed to
replicate itself (by infecting other programs), and (eventually) wreaking havoc.

 Viruses are more likely to infect PCs than UNIX or other multi-user systems, because
programs in the latter systems have limited authority to modify other programs or to
access critical system structures (such as the boot block.)

 Viruses are delivered to systems in a virus dropper, usually some form of a Trojan Horse,
and usually via e-mail or unsafe downloads.

 Viruses take many forms (see below.) Figure 15.5 shows typical operation of a boot
sector virus:

Figure - A boot-sector computer virus.

 Some of the forms of viruses include:

o File - A file virus attaches itself to an executable file, causing it to run the
virus code first and then jump to the start of the original program. These

178

viruses are termed parasitic, because they do not leave any new files on
the system, and the original program is still fully functional.

o Boot - A boot virus occupies the boot sector, and runs before the OS is
loaded. These are also known as memory viruses, because in operation
they reside in memory, and do not appear in the file system.

o Macro - These viruses exist as a macro (script) that is run automatically
by certain macro-capable programs such as MS Word or Excel. These
viruses can exist in word processing documents or spreadsheet files.

o Source code viruses look for source code and infect it in order to spread.
o Polymorphic viruses change every time they spread - Not their underlying

functionality, but just their signature, by which virus checkers recognize
them.

o Encrypted viruses travel in encrypted form to escape detection. In
practice they are self-decrypting, which then allows them to infect other
files.

o Stealth viruses try to avoid detection by modifying parts of the system
that could be used to detect it. For example the read () system call could
be modified so that if an infected file is read the infected part gets skipped
and the reader would see the original unadulterated file.

o Tunneling viruses attempt to avoid detection by inserting themselves into
the interrupt handler chain, or into device drivers.

o Multipartite viruses attack multiple parts of the system, such as files,
boot sector, and memory.

o Armoured viruses are coded to make them hard for anti-virus researchers
to decode and understand. In addition many files associated with viruses
are hidden, protected, or given innocuous looking names such as "...".

 In 2004 a virus exploited three bugs in Microsoft products to infect hundreds of Windows
servers (including many trusted sites) running Microsoft Internet Information Server,
which in turn infected any Microsoft Internet Explorer web browser that visited any of
the infected server sites. One of the back-door programs it installed was a keystroke
logger, which records user’s keystrokes, including passwords and other sensitive
information.

 There is some debate in the computing community as to whether a monoculture, in
which nearly all systems run the same hardware, operating system, and applications,
increases the threat of viruses and the potential for harm caused by them.

System and Network Threats

 Most of the threats described above are termed program threats, because they attack
specific programs or are carried and distributed in programs. The threats in this section
attack the operating system or the network itself, or leverage those systems to launch
their attacks.

Worms

 A worm is a process that uses the fork / spawns process to make copies of itself in order
to wreak havoc on a system. Worms consume system resources, often blocking out other,

179

legitimate processes. Worms that propagate over networks can be especially problematic,
as they can tie up vast amounts of network resources and bring down large-scale systems.

 One of the most well-known worms was launched by Robert Morris, a graduate student
at Cornell, in November 1988. Targeting Sun and VAX computers running BSD UNIX
version 4, the worm spanned the Internet in a matter of a few hours, and consumed
enough resources to bring down many systems.

 This worm consisted of two parts:

1. A small program called a grappling hook, which was deposited on the
target system through one of three vulnerabilities, and

2. The main worm program, which was transferred onto the target system
and launched by the grappling hook program.

Figure - The Morris Internet worm.

 The three vulnerabilities exploited by the Morris Internet worm were as follows:

1. rsh (remote shell) is a utility that was in common use at that time for
accessing remote systems without having to provide a password. If a user
had an account on two different computers (with the same account name
on both systems), then the system could be configured to allow that user to
remotely connect from one system to the other without having to provide a
password. Many systems were configured so that any user (except root) on
system A could access the same account on system B without providing a
password.

2. finger is a utility that allows one to remotely query a user database, to find
the true name and other information for a given account name on a given
system. For example "finger joeUser@somemachine.edu" would access
the finger daemon at somemachine.edu and return information regarding
joeUser. Unfortunately the finger daemon (which ran with system
privileges) had the buffer overflow problem, so by sending a special 536-
character user name the worm was able to fork a shell on the remote
system running with root privileges.

180

3. send mail is a routine for sending and forwarding mail that also included a
debugging option for verifying and testing the system. The debug feature
was convenient for administrators, and was often left turned on. The
Morris worm exploited the debugger to mail and executes a copy of the
grappling hook program on the remote system.

 Once in place, the worm undertook systematic attacks to discover user passwords:

4. First it would check for accounts for which the account name and the
password were the same, such as "guest", "guest".

5. Then it would try an internal dictionary of 432 favorite password choices.
(I’m sure "password", "pass", and blank passwords were all on the list.)

6. Finally it would try every word in the standard UNIX on-line dictionary to
try and break into user accounts.

 Once it had gotten access to one or more user accounts, then it would attempt to use those
accounts to rsh to other systems, and continue the process.

 With each new access the worm would check for already running copies of itself, and 6
out of 7 times if it found one it would stop. (The seventh was to prevent the worm from
being stopped by fake copies.)

 Fortunately the same rapid network connectivity that allowed the worm to propagate so
quickly also quickly led to its demise - Within 24 hours remedies for stopping the worm
propagated through the Internet from administrator to administrator, and the worm was
quickly shut down.

 There is some debate about whether Mr. Morris's actions were a harmless prank or
research project that got out of hand or a deliberate and malicious attack on the Internet.
However the court system convicted him, and penalized him heavy fines and court costs.

 There have since been many other worm attacks, including the W32.Sobig.F@mm attack
which infected hundreds of thousands of computers and an estimated 1 in 17 e-mails in
August 2003. This worm made detection difficult by varying the subject line of the
infection-carrying mail message, including "Thank You!", "Your details", and "Re:
Approved".

Port Scanning

 Port Scanning is technically not an attack, but rather a search for vulnerabilities to
attack. The basic idea is to systematically attempt to connect to every known (or common
or possible) network port on some remote machine, and to attempt to make contact. Once
it is determined that a particular computer is listening to a particular port, then the next
step is to determine what daemon is listening, and whether or not it is a version
containing a known security flaw that can be exploited.

 Because port scanning is easily detected and traced, it is usually launched from zombie
systems, i.e. previously hacked systems that are being used without the knowledge or
permission of their rightful owner. For this reason it is important to protect "innocuous"
systems and accounts as well as those that contain sensitive information or special
privileges.

 There are also port scanners available that administrators can use to check their own
systems, which report any weaknesses found but which do not exploit the weaknesses or
cause any problems. Two such systems are nmap (http://www.insecure.org/nmap)

181

and nessus (http://www.nessus.org). The former identifies what OS is found, what
firewalls are in place, and what services are listening to what ports. The latter also
contains a database of known security holes, and identifies any that it finds.

Denial of Service

 Denial of Service (DOS) attacks do not attempt to actually access or damage systems,
but merely to clog them up so badly that they cannot be used for any useful work. Tight
loops that repeatedly request system services are an obvious form of this attack.

 DOS attacks can also involve social engineering, such as the Internet chain letters that
say "send this immediately to 10 of your friends, and then go to a certain URL", which
clogs up not only the Internet mail system but also the web server to which everyone is
directed. (Note: Sending a "reply all" to such a message notifying everyone that it was
just a hoax also clogs up the Internet mail service, just as effectively as if you had
forwarded the thing.)

 Security systems that lock accounts after a certain number of failed login attempts are
subject to DOS attacks which repeatedly attempt logins to all accounts with invalid
passwords strictly in order to lock up all accounts.

 Sometimes DOS is not the result of deliberate maliciousness. Consider for example:

o A web site that sees a huge volume of hits as a result of a successful
advertising campaign.

o CNN.com occasionally gets overwhelmed on big news days, such as Sept
11, 2001.

o CS students given their first programming assignment involving fork ()
often quickly fill up process tables or otherwise completely consume
system resources. :-)

o (Please use ipcs and ipcrm when working on the inter-process
communications assignment!)

Cryptography as a Security Tool

 Within a given computer the transmittal of messages is safe, reliable and secure, because
the OS knows exactly where each one is coming from and where it is going.

 On a network, however, things aren't so straightforward - A rogue computer (or e-mail
sender) may spoof their identity, and outgoing packets are delivered to a lot of other
computers besides their (intended) final destination, which brings up two big questions
of security:

o Trust - How can the system be sure that the messages received are really from the
source that they say they are, and can that source be trusted?

o Confidentiality - How can one ensure that the messages one is sending are
received only by the intended recipient?

 Cryptography can help with both of these problems, through a system
of secrets and keys. In the former case, the key is held by the sender, so that the recipient
knows that only the authentic author could have sent the message; In the latter, the key is
held by the recipient, so that only the intended recipient can receive the message
accurately.

182

 Keys are designed so that they cannot be divined from any public information, and must

be guarded carefully. (Asymmetric encryption involves both a public and a private
key.)

Encryption

 The basic idea of encryption is to encode a message so that only the desired recipient can
decode and read it. Encryption has been around since before the days of Caesar, and is an
entire field of study in itself. Only some of the more significant computer encryption
schemes will be covered here.

 The basic process of encryption is shown in Figure 15.7, and will form the basis of most
of our discussion on encryption. The steps in the procedure and some of the key
terminology are as follows:

1. The sender first creates a message, m in plaintext.
2. The message is then entered into an encryption algorithm, E, along with

the encryption key, Ke.
3. The encryption algorithm generates the cipher text, c, = E (Ke) (m). For

any key k, E (k) is an algorithm for generating cipher text from a message,
and both E and E (k) should be efficiently computable functions.

4. The cipher text can then be sent over an unsecured network, where it may
be received by attackers.

5. The recipient enters the cipher text into a decryption algorithm, D, along
with the decryption key, Kd.

6. The decryption algorithm re-generates the plaintext message, m, = D (Kd)
(c). For any key k, D (k) is an algorithm for generating a clear text
message from a cipher text, and both D and D (k) should be efficiently
computable functions.

7. The algorithms described here must have this important property: Given a
cipher text c, a computer can only compute a message m such that c = E
(k) (m) if it possesses D (k). (In other words, the messages can't be
decoded unless you have the decryption algorithm and the decryption
key.)

183

Figure - A secure communication over an insecure medium.

Symmetric Encryption

 With symmetric encryption the same key is used for both encryption and decryption, and
must be safely guarded. There are a number of well-known symmetric encryption
algorithms that have been used for computer security:

o The Data-Encryption Standard, DES, developed by the National
Institute of Standards, NIST, has been a standard civilian
encryption standard for over 20 years. Messages are broken down
into 64-bit chunks, each of which is encrypted using a 56-bit key
through a series of substitutions and transformations. Some of the
transformations are hidden (black boxes), and are classified by the
U.S. government.

o DES is known as a block cipher, because it works on blocks of
data at a time. Unfortunately this is vulnerability if the same key is
used for an extended amount of data. Therefore an enhancement is
to not only encrypt each block, but also to XOR it with the
previous block, in a technique known as cipher-block chaining.

o As modern computers become faster and faster, the security of
DES has decreased, to where it is now considered insecure because
its keys can be exhaustively searched within a reasonable amount
of computer time. An enhancement called triple DES encrypts the
data three times using three separate keys (actually two
encryptions and one decryption) for an effective key length of 168
bits. Triple DES is in widespread use today.

o The Advanced Encryption Standard, AES, developed by NIST in
2001 to replace DES uses key lengths of 128, 192, or 256 bits, and

184

encrypts in blocks of 128 bits using 10 to 14 rounds of
transformations on a matrix formed from the block.

o The two fish algorithm uses variable key lengths up to 256 bits
and works on 128 bit blocks.

o RC5 can vary in key length, block size, and the number of
transformations, and runs on a wide variety of CPUs using only
basic computations.

o RC4 is a stream cipher, meaning it acts on a stream of data rather
than blocks. The key is used to seed a pseudo-random number
generator, which generates a key stream of keys. RC4 is used
in WEP, but has been found to be breakable in a reasonable
amount of computer time.

Asymmetric Encryption

 With asymmetric encryption, the decryption key, Kd, is not the same as the encryption
key, Ke, and more importantly cannot be derived from it, which means the encryption
key can be made publicly available, and only the decryption key needs to be kept secret.
(or vice-versa, depending on the application.)

 One of the most widely used asymmetric encryption algorithms is RSA, named after its
developers - Rivest, Shamir, and Adleman.

 RSA is based on two large prime numbers, p and q, (on the order of 512 bits each), and
their product N.

o Ke and Kd must satisfy the relationship:
(Ke * Kd) % [(p - 1) * (q - 1)] = = 1

o The encryption algorithm is:
c = E(Ke)(m) = m^Ke % N

o The decryption algorithm is:
m = D(Kd)(c) = c^Kd % N

 An example using small numbers:
o p = 7
o q = 13
o N = 7 * 13 = 91
o (p - 1) * (q - 1) = 6 * 12 = 72
o Select Ke < 72 and relatively prime to 72, say 5
o Now select Kd, such that (Ke * Kd) % 72 = = 1, say 29
o The public key is now (5, 91) and the private key is (29, 91)
o Let the message, m = 42
o Encrypt: c = 42^5 % 91 = 35
o Decrypt: m = 35^29 % 91 = 42

185

Figure - Encryption and decryption using RSA asymmetric cryptography

 Note that asymmetric encryption is much more computationally expensive
than symmetric encryption, and as such it is not normally used for large
transmissions. Asymmetric encryption is suitable for small messages,
authentication, and key distribution, as covered in the following sections.

Authentication

 Authentication involves verifying the identity of the entity that transmitted a message.
 For example, if D (Kd) (c) produces a valid message, then we know the sender was in

possession of E (Ke).
 This form of authentication can also be used to verify that a message has not been

modified
 Authentication revolves around two functions, used for signatures (or signing),

and verification:

o A signing function, S (Ks) that produces an authenticator, A, from
any given message m.

o A Verification function, V (Kv, m, A) that produces a value of
"true" if A was created from m, and "false" otherwise.

o Obviously S and V must both be computationally efficient.
o More importantly, it must not be possible to generate a valid

authenticator, A, without having possession of S (Ks).
o Furthermore, it must not be possible to divine S (Ks) from the

combination of (m and A), since both are sent visibly across
networks.

186

 Understanding authenticators begins with an understanding of hash functions, which is
the first step:

o Hash functions, H (m) generate a small fixed-size block of data
known as a message digest, or hash value from any given input
data.

o For authentication purposes, the hash function must be collision
resistant on m. That is it should not be reasonably possible to find
an alternate message m' such that H (m') = H (m).

o Popular hash functions are MD5, which generates a 128-bit
message digest, and SHA-1, which generates a 160-bit digest.

 Message digests are useful for detecting (accidentally) changed messages, but are not
useful as authenticators, because if the hash function is known, then someone could
easily change the message and then generate a new hash value for the modified message.
Therefore authenticators take things one step further by encrypting the message digest.

 A message-authentication code, MAC, uses symmetric encryption and decryption of the
message digest, which means that anyone capable of verifying an incoming message
could also generate a new message.

 An asymmetric approach is the digital-signature algorithm, which produces
authenticators called digital signatures. In this case Ks and Kv are separate, Kv is the
public key, and it is not practical to determine S (Ks) from public information. In practice
the sender of a message signs it (produces a digital signature using S(Ks)), and the
receiver uses V(Kv) to verify that it did indeed come from a trusted source, and that it has
not been modified.

 There are three good reasons for having separate algorithms for encryption of messages
and authentication of messages:

o Authentication algorithms typically require fewer calculations,
making verification a faster operation than encryption.

o Authenticators are almost always smaller than the messages,
improving space efficiency. (?)

o Sometimes we want authentication only, and not confidentiality,
such as when a vendor issues a new software patch.

 Another use of authentication is non-repudiation, in which a person filling out an
electronic form cannot deny that they were the ones who did so.

Key Distribution

Key distribution with symmetric cryptography is a major problem, because all keys must be kept
secret, and they obviously can't be transmitted over unsecured channels. One option is to send
them out-of-band, say via paper or a confidential conversation.

 Another problem with symmetric keys is that a separate key must be maintained and used
for each correspondent with whom one wishes to exchange confidential information.

 Asymmetric encryption solves some of these problems, because the public key can be
freely transmitted through any channel, and the private key doesn't need to be transmitted
anywhere. Recipients only need to maintain one private key for all incoming messages,
though senders must maintain a separate public key for each recipient to which they
might wish to send a message. Fortunately the public keys are not confidential, so
this key-ring can be easily stored and managed.

187

 Unfortunately there is still some security concerns regarding the public keys used in
asymmetric encryption. Consider for example the following man-in-the-middle attack
involving phony public keys:

Figure - A man-in-the-middle attack on asymmetric cryptography.

 One solution to the above problem involves digital certificates, which are public keys
that have been digitally signed by a trusted third party. But wait a minute - How do we
trust that third party, and how do we know they are really who they say they are?
Certain certificate authorities have their public keys included within web browsers and
other certificate consumers before they are distributed. These certificate authorities can
then vouch for other trusted entities and so on in a web of trust, as explained more fully
in section 15.4.3.

Implementation of Cryptography

 Network communications are implemented in multiple layers - Physical, Data Link,
Network, Transport, and Application being the most common breakdown.

 Encryption and security can be implemented at any layer in the stack, with pros and cons
to each choice:

o Because packets at lower levels contain the contents of higher layers, encryption
at lower layers automatically encrypts higher layer information at the same time.

o However security and authorization may be important to higher levels
independent of the underlying transport mechanism or route taken.

 At the network layer the most common standard is IPSec, a secure form of the IP layer,
which is used to set up Virtual Private Networks, VPNs.

 At the transport layer the most common implementation is SSL, described below.

An Example: SSL

188

 SSL (Secure Sockets Layer) 3.0 was first developed by Netscape, and has now evolved
into the industry-standard TLS protocol. It is used by web browsers to communicate
securely with web servers, making it perhaps the most widely used security protocol on
the Internet today.

 SSL is quite complex with many variations, only a simple case of which is shown here.
 The heart of SSL is session keys, which are used once for symmetric encryption and then

discarded, requiring the generation of new keys for each new session. The big challenge
is how to safely create such keys while avoiding man-in-the-middle and replay attacks.

 Prior to commencing the transaction, the server obtains a certificate from a certification
authority, CA, containing:

o Server attributes such as unique and common names.
o Identity of the public encryption algorithm, E (), for the server.
o The public key, k_e for the server.
o The validity interval within which the certificate is valid.
o A digital signature on the above issued by the CA:

 a = S(K_CA)((attrs, E(k_e), interval)
 In addition, the client will have obtained a public verification algorithm, V (K_CA), for

the certifying authority. Today's modern browsers include these built-in by the browser
vendor for a number of trusted certificate authorities.

 The procedure for establishing secure communications is as follows:
1. The client, c, connects to the server, s, and sends a random 28-byte number, n_c.
2. The server replies with its own random value, n_s, along with its certificate of

authority.
3. The client uses its verification algorithm to confirm the identity of the sender, and

if all checks out, then the client generates a 46 byte random premaster secret,
pms, and sends an encrypted version of it as cpms = E(k_s)(pms)

4. The server recovers pms as D (k_s) (cpms).
5. Now both the client and the server can compute a shared 48-byte master secret,

ms, = f(pms, n_s, n_c)
6. Next, both client and server generate the following from ms:

 Symmetric encryption keys k_sc_crypt and k_cs_crypt for
encrypting messages from the server to the client and vice-versa
respectively.

 MAC generation keys k_sc_mac and k_cs_mac for generating
authenticators on messages from server to client and client to
server respectively.

7. To send a message to the server, the client sends:
 c = E(k_cs_crypt)(m, S(k_cs_mac))(m)))

8. Upon receiving c, the server recovers:
 (m,a) = D(k_cs_crypt)(c)
 and accepts it if V (k_sc_mac) (m, a) is true.

 This approach enables both the server and client to verify the authenticity of every
incoming message, and to ensure that outgoing messages are only readable by the process
that originally participated in the key generation.

 SSL is the basis of many secure protocols, including Virtual Private Networks, VPNs, in
which private data is distributed over the insecure public internet structure in an
encrypted fashion that emulates a privately owned network.

189

User Authentication

 Protection, dealt with making sure that only certain users were allowed to perform certain
tasks, i.e. that a users privileges were dependent on his or her identity. But how does one
verify that identity to begin with?

Passwords

 Passwords are the most common form of user authentication. If the user is in
possession of the correct password, then they are considered to have identified
themselves.

 In theory separate passwords could be implemented for separate activities, such as
reading this file, writing that file, etc. In practice most systems use one password
to confirm user identity, and then authorization is based upon that identification.
This is a result of the classic trade-off between security and convenience.

Password Vulnerabilities

 Passwords can be guessed.

o Intelligent guessing requires knowing something about the intended target
in specific, or about people and commonly used passwords in general.

o Brute-force guessing involves trying every word in the dictionary, or
every valid combination of characters. For this reason good passwords
should not be in any dictionary (in any language), should be reasonably
lengthy, and should use the full range of allowable characters by including
upper and lower case characters, numbers, and special symbols.

 "Shoulder surfing" involves looking over people's shoulders while they are typing in their
password.

o Even if the lurker does not get the entire password, they may get enough
clues to narrow it down, especially if they watch on repeated occasions.

o Common courtesy dictates that you look away from the keyboard while
someone is typing their password.

o Passwords echoed as stars or dots still give clues, because an observer can
determine how many characters are in the password. :-(

 "Packet sniffing" involves putting a monitor on a network connection and reading data
contained in those packets.

o SSH encrypts all packets, reducing the effectiveness of packet sniffing.
o However you should still never e-mail a password, particularly not with

the word "password" in the same message or worse yet the subject header.
o Beware of any system that transmits passwords in clear text. (“Thank you

for signing up for XYZ. Your new account and password information are
shown below".) You probably want to have a spare throw-away password
to give these entities, instead of using the same high-security password
that you use for banking or other confidential uses.

 Long hard to remember passwords are often written down, particularly if they are used
seldom or must be changed frequently. Hence a security trade-off of passwords that are
easily divined versus those that get written down. :-(

190

 Passwords can be given away to friends or co-workers, destroying the integrity of the
entire user-identification system.

 Most systems have configurable parameters controlling password generation and what
constitutes acceptable passwords.

o They may be user chosen or machine generated.
o They may have minimum and/or maximum length requirements.
o They may need to be changed with a given frequency. (In extreme cases

for every session.)
o A variable length history can prevent repeating passwords.
o More or less stringent checks can be made against password dictionaries.

Encrypted Passwords

 Modern systems do not store passwords in clear-text form, and hence there is no
mechanism to look up an existing password.

 Rather they are encrypted and stored in that form. When a user enters their password, that
too is encrypted, and if the encrypted version matches, then user authentication passes.

 The encryption scheme was once considered safe enough that the encrypted versions
were stored in the publicly readable file "/etc/passwd".

o They always encrypted to a 13 character string, so an account could be
disabled by putting a string of any other length into the password field.

o Modern computers can try every possible password combination in a
reasonably short time, so now the encrypted passwords are stored in files
that are only readable by the super user. Any password-related programs
run as setuid root to get access to these files. (/etc/shadow)

o A random seed is included as part of the password generation process, and
stored as part of the encrypted password. This ensures that if two accounts
have the same plain-text password that they will not have the same
encrypted password. However cutting and pasting encrypted passwords
from one account to another will give them the same plain-text passwords.

One-Time Passwords

 One-time passwords resist shoulder surfing and other attacks where an observer is able to
capture a password typed in by a user.

o These are often based on a challenge and a response. Because the
challenge is different each time, the old response will not be valid for
future challenges.

 For example, The user may be in possession of a secret function
f(x). The system challenges with some given value for x, and the
user responds with f(x), which the system can then verify. Since
the challenger gives a different (random) x each time, the answer is
constantly changing.

191

 A variation uses a map (e.g. a road map) as the key. Today's
question might be "On what corner is SEO located?", and
tomorrow's question might be "How far is it from Navy Pier to
Wrigley Field?" Obviously "Taylor and Morgan" would not be
accepted as a valid answer for the second question!

o Another option is to have some sort of electronic card with a series of
constantly changing numbers, based on the current time. The user enters
the current number on the card, which will only be valid for a few
seconds. A two-factor authorization also requires a traditional password
in addition to the number on the card, so others may not use it if it were
ever lost or stolen.

o A third variation is a code book, or one-time pad. In this scheme a long
list of passwords is generated and each one is crossed off and cancelled as
it is used. Obviously it is important to keep the pad secure.

Biometrics

 Biometrics involve a physical characteristic of the user that is not easily forged or
duplicated and not likely to be identical between multiple users.

o Fingerprint scanners are getting faster, more accurate, and more
economical.

o Palm readers can check thermal properties, finger length, etc.
o Retinal scanners examine the back of the users' eyes.
o Voiceprint analyzers distinguish particular voices.
o Difficulties may arise in the event of colds, injuries, or other physiological

changes.

Implementing Security Defenses

Security Policy

 A security policy should be well thought-out, agreed upon, and contained in a living
document that everyone adheres to and is updated as needed.

 Examples of contents include how often port scans are run, password requirements, virus
detectors, etc.

Vulnerability Assessment

 Periodically examine the system to detect vulnerabilities.

o Port scanning.
o Check for bad passwords.
o Look for suid programs.
o Unauthorized programs in system directories.
o Incorrect permission bits set.
o Program checksums / digital signatures which have changed.
o Unexpected or hidden network daemons.

192

o New entries in start-up scripts, shutdown scripts, cron tables, or other
system scripts or configuration files.

o New unauthorized accounts.
 The government considers a system to be only as secure as its most far-reaching

component. Any system connected to the Internet is inherently less secure than one that is
in a sealed room with no external communications.

 Some administrators advocate "security through obscurity", aiming to keep as much
information about their systems hidden as possible, and not announcing any security
concerns they come across. Others announce security concerns from the rooftops, under
the theory that the hackers are going to find out anyway, and the only one kept in the dark
by obscurity are honest administrators who need to get the word.

Intrusion Detection

 Intrusion detection attempts to detect attacks, both successful and unsuccessful attempts.
Different techniques vary along several axes:

o The time that detection occurs, either during the attack or after the fact.
o The types of information examined to detect the attack(s). Some attacks

can only be detected by analyzing multiple sources of information.
o The response to the attack, which may range from alerting an

administrator to automatically stopping the attack (e.g. killing an
offending process), to tracing back the attack in order to identify the
attacker.

 Another approach is to divert the attacker to a honey pot, on
a honey net. The idea behind a honey pot is a computer running
normal services, but which no one uses to do any real work. Such a
system should not see any network traffic under normal conditions,
so any traffic going to or from such a system is by definition
suspicious. Honey pots are normally kept on a honey net protected
by a reverse firewall, which will let potential attackers in to the
honey pot, but will not allow any outgoing traffic. (So that if the
honey pot is compromised, the attacker cannot use it as a base of
operations for attacking other systems.) Honey pots are closely
watched, and any suspicious activity carefully logged and
investigated.

 Intrusion Detection Systems, IDSs, raise the alarm when they detect an intrusion.
Intrusion Detection and Prevention Systems, IDPs, act as filtering routers, shutting down
suspicious traffic when it is detected.

 There are two major approaches to detecting problems:
o Signature-Based Detection scans network packets, system files, etc.

looking for recognizable characteristics of known attacks, such as text
strings for messages or the binary code for "exec /bin/sh". The problem
with this is that it can only detect previously encountered problems for
which the signature is known, requiring the frequent update of signature
lists.

o Anomaly Detection looks for "unusual" patterns of traffic or operation,
such as unusually heavy load or an unusual number of logins late at night.

193

 The benefit of this approach is that it can detect previously
unknown attacks, so called zero-day attacks.

 One problem with this method is characterizing what is "normal"
for a given system. One approach is to benchmark the system, but
if the attacker is already present when the benchmarks are made,
then the "unusual" activity is recorded as "the norm."

 Another problem is that not all changes in system performance are
the result of security attacks. If the system is bogged down and
really slow late on a Thursday night, does that mean that a hacker
has gotten in and is using the system to send out SPAM, or does it
simply mean that a CS 385 assignment is due on Friday? :-)

 To be effective, anomaly detectors must have a very low false
alarm (false positive) rate, lest the warnings get ignored, as well as
a low false negative rate in which attacks are missed.

Virus Protection

 Modern anti-virus programs are basically signature-based detection systems, which also
have the ability (in some cases) of disinfecting the affected files and returning them back
to their original condition.

 Both viruses and anti-virus programs are rapidly evolving. For example viruses now
commonly mutate every time they propagate, and so anti-virus programs look for
families of related signatures rather than specific ones.

 Some antivirus programs look for anomalies, such as an executable program being
opened for writing (other than by a compiler.)

 Avoiding bootleg, free, and shared software can help reduce the chance of catching a
virus, but even shrink-wrapped official software has on occasion been infected by
disgruntled factory workers.

 Some virus detectors will run suspicious programs in a sandbox, an isolated and secure
area of the system which mimics the real system.

 Rich Text Format, RTF, files cannot carry macros, and hence cannot carry Word macro
viruses.

 Known safe programs (e.g. right after a fresh install or after a thorough examination) can
be digitally signed, and periodically the files can be re-verified against the stored digital
signatures. (Which should be kept secure, such as on off-line write-only medium?)

Auditing, Accounting, and Logging

 Auditing, accounting, and logging records can also be used to detect anomalous behavior.
 Some of the kinds of things that can be logged include authentication failures and

successes, logins, running of suid or sgid programs, network accesses, system calls, etc.
In extreme cases almost every keystroke and electron that moves can be logged for future
analysis. (Note that on the flip side, all this detailed logging can also be used to analyze
system performance. The down side is that the logging also affects system performance
(negatively!), and so a Heisenberg effect applies.)

 "The Cuckoo's Egg" tells the story of how Cliff Stoll detected one of the early UNIX
break ins when he noticed anomalies in the accounting records on a computer system
being used by physics researchers.

194

Tripwire File system (New Sidebar)

 The tripwire file system monitors files and directories for changes, on the assumption that
most intrusions eventually result in some sort of undesired or unexpected file changes.

 The two config file indicates what directories are to be monitored, as well as what
properties of each file are to be recorded. (E.g. one may choose to monitor permission
and content changes, but not worry about read access times.)

 When first run, the selected properties for all monitored files are recorded in a database.
Hash codes are used to monitor file contents for changes.

 Subsequent runs report any changes to the recorded data, including hash code changes,
and any newly created or missing files in the monitored directories.

 For full security it is necessary to also protect the tripwire system itself, most importantly
the database of recorded file properties. This could be saved on some external or write-
only location, but that makes it harder to change the database when legitimate changes
are made.

 It is difficult to monitor files that are supposed to change, such as log files. The best
tripwire can do in this case is to watch for anomalies, such as a log file that shrinks in
size.

 Free and commercial versions are available at http://tripwire.org and http://tripwire.com.

Fire walling to Protect Systems and Networks

 Firewalls are devices (or sometimes software) that sits on the border between two
securities domains and monitor/log activity between them, sometimes restricting the
traffic that can pass between them based on certain criteria.

 For example a firewall router may allow HTTP: requests to pass through to a web server
inside a company domain while not allowing telnet, ssh, or other traffic to pass through.

 A common architecture is to establish a de-militarized zone, DMZ, which sort of sits
"between" the company domain and the outside world, as shown below. Company
computers can reach either the DMZ or the outside world, but outside computers can only
reach the DMZ. Perhaps most importantly, the DMZ cannot reach any of the other
company computers, so even if the DMZ is breached, the attacker cannot get to the rest of
the company network. (In some cases the DMZ may have limited access to company
computers, such as a web server on the DMZ that needs to query a database on one of the
other company computers.)

195

Figure 15.10 - Domain separation via firewall.

 Firewalls themselves need to be resistant to attacks, and unfortunately have several
vulnerabilities:

o Tunneling, which involves encapsulating forbidden traffic inside of packets that
are allowed?

o Denial of service attacks addressed at the firewall itself.
o Spoofing, in which an unauthorized host sends packets to the firewall with the

return address of an authorized host.
 In addition to the common firewalls protecting a company internal network from the

outside world, there are also some specialized forms of firewalls that have been recently
developed:

o A personal firewall is a software layer that protects an individual computer. It
may be a part of the operating system or a separate software package.

o An application proxy firewall understands the protocols of a particular service
and acts as a stand-in (and relay) for the particular service. For example, and
SMTP proxy firewall would accept SMTP requests from the outside world,
examine them for security concerns, and forward only the "safe" ones on to the
real SMTP server behind the firewall.

o XML firewalls examine XML packets only, and reject ill-formed packets. Similar
firewalls exist for other specific protocols.

o System call firewalls guard the boundary between user mode and system mode,
and reject any system calls that violate security policies.

Computer-Security Classifications

 No computer system can be 100% secure, and attempts to make it so can quickly make it
unusable.

 However one can establish a level of trust to which one feels "safe" using a given
computer system for particular security needs.

 The U.S. Department of Defense’s "Trusted Computer System Evaluation Criteria"
defines four broad levels of trust, and sub-levels in some cases:

o Level D is the least trustworthy, and encompasses all systems that do not meet
any of the more stringent criteria. DOS and Windows 3.1 fall into level D, which

196

has no user identification or authorization, and anyone who sits down has full
access and control over the machine.

o Level C1 includes user identification and authorization, and some means of
controlling what users are allowed to access what files. It is designed for use by a
group of mostly cooperating users, and describes most common UNIX systems.

o Level C2 adds individual-level control and monitoring. For example file access
control can be allowed or denied on a per-individual basis, and the system
administrator can monitor and log the activities of specific individuals. Another
restriction is that when one user uses a system resource and then returns it back to
the system, another user who uses the same resource later cannot read any of the
information that the first user stored there. (I.e. buffers, etc. are wiped out
between users, and are not left full of old contents.) Some special secure versions
of UNIX have been certified for C2 security levels, such as SCO.

o Level B adds sensitivity labels on each object in the system, such as "secret", "top
secret", and "confidential". Individual users have different clearance levels, which
controls which objects they are able to access. All human-readable documents are
labeled at both the top and bottom with the sensitivity level of the file.

o Level B2 extends sensitivity labels to all system resources, including devices. B2
also supports covert channels and the auditing of events that could exploit covert
channels.

o B3 allows creation of access-control lists that denote users NOT given access to
specific objects.

o Class A is the highest level of security. Architecturally it is the same as B3, but it
is developed using formal methods which can be used to prove that the system
meets all requirements and cannot have any possible bugs or other vulnerabilities.
Systems in class A and higher may be developed by trusted personnel in secure
facilities.

o These classifications determine what a system can implement, but it is up to
security policy to determine how they are implemented in practice. These systems
and policies can be reviewed and certified by trusted organizations, such as the
National Computer Security Centre. Other standards may dictate physical
protections and other issues.

An Example: Windows XP

 Windows XP is a general purpose OS designed to support a wide variety of security
features and methods. It is based on user accounts which can be grouped in any manner.

 When a user logs on, a security access token is issued that includes the security ID for
the user, security IDs for any groups of which the user is a member, and a list of any
special privileges the user has, such as performing backups, shutting down the system,
and changing the system clock.

 Every process running on behalf of a user gets a copy of the user’s security token, which
determines the privileges of that process running on behalf of that user.

 Authentication is normally done via passwords, but the modular design of XP allows for
alternative authentication such as retinal scans or fingerprint readers.

 Windows XP includes built-in auditing that allows many common security threats to be
monitored, such as successful and unsuccessful logins, logouts, attempts to write to
executable files, and access to certain sensitive files.

197

 Security attributes of objects are described by security descriptors, which include the ID
of the owner, group ownership for POSIX subsystems only, a discretionary access-
control list describing exactly what permissions each user or group on the system has for
this particular object, and auditing control information.

 The access control lists include for each specified user or group either Access Allowed or
Access Denied for the following types of actions: Read Data, Write Data, Append Data,
Execute, Read Attributes, Write Attributes, ReadExtendedAttribute, and
WriteExtendedAttribute.

 Container objects such as directories can logically contain other objects. When a new
object is created in a container or copied into a container, by default it inherits the
permissions of the new container. No container objects inherit any other permission. If
the permissions of the container are changed later, that does not affect the permissions of
the contained objects.

 Although Windows XP is capable of supporting a secure system, many of the security
features are not enabled by default, resulting in a fair number of security breaches on XP
systems. There are also a large number of system daemons and other programs that start
automatically at start-up, whether the system administrator has thought about them or not.
(My system currently has 54 processes running, most of which I did not deliberately start
and which have short cryptic names which makes it hard to divine exactly what they do
or why. Faced with this situation, most users and administrators will simply leave alone
anything they don't understand.)

5.3 Security

The Security Problem

 Protection dealt with protecting files and other resources from accidental misuse by
cooperating users sharing a system, generally using the computer for normal purposes.

 Security deals with protecting systems from deliberate attacks, either internal or external,
from individuals intentionally attempting to steal information, damage information, or
otherwise deliberately wreak havoc in some manner.

 Some of the most common types of violations include:
o Breach of Confidentiality - Theft of private or confidential information, such as

credit-card numbers, trade secrets, patents, secret formulas, manufacturing
procedures, medical information, financial information, etc.

o Breach of Integrity - Unauthorized modification of data, which may have serious
indirect consequences. For example a popular game or other program's source
code could be modified to open up security holes on users systems before being
released to the public.

o Breach of Availability - Unauthorized destruction of data, often just for the "fun"
of causing havoc and for bragging rites. Vandalism of web sites is a common
form of this violation.

o Theft of Service - Unauthorized use of resources, such as theft of CPU cycles,
installation of daemons running an unauthorized file server, or tapping into the
target's telephone or networking services.

o Denial of Service, DOS - Preventing legitimate users from using the system, often
by overloading and overwhelming the system with an excess of requests for
service.

198

 One common attack is masquerading, in which the attacker pretends to be a trusted third
party. A variation of this is the man-in-the-middle, in which the attacker masquerades as
both ends of the conversation to two targets.

 A replay attack involves repeating a valid transmission. Sometimes this can be the entire
attack, (such as repeating a request for a money transfer), or other times the content of the
original message is replaced

with malicious content.

Figure - Standard security attacks.

 There are four levels at which a system must be protected:
1. Physical - The easiest way to steal data is to pocket the backup tapes. Also,

access to the root console will often give the user special privileges, such as
rebooting the system as root from removable media. Even general access to
terminals in a computer room offers some opportunities for an attacker, although
today's modern high-speed networking environment provides more and more
opportunities for remote attacks.

2. Human - There is some concern that the humans who are allowed access to a
system be trustworthy, and that they cannot be coerced into breaching security.
However more and more attacks today are made via social engineering, which
basically means fooling trustworthy people into accidentally breaching security.

199

 Phishing involves sending an innocent-looking e-mail or web site
designed to fool people into revealing confidential information. E.g. spam
e-mails pretending to be from e-Bay, PayPal, or any of a number of banks
or credit-card companies.

 Dumpster Diving involves searching the trash or other locations for
passwords that are written down. (Note: Passwords that are too hard to
remember, or which must be changed frequently are more likely to be
written down somewhere close to the user's station.)

 Password Cracking involves divining user’s passwords, either by
watching them type in their passwords, knowing something about them
like their pet's names, or simply trying all words in common dictionaries.
(Note: "Good" passwords should involve a minimum number of
characters, include non-alphabetical characters, and not appear in any
dictionary (in any language), and should be changed frequently. Note also
that it is proper etiquette to look away from the keyboard while someone
else is entering their password.)

3. Operating System - The OS must protect itself from security breaches, such as
runaway processes (denial of service), memory-access violations, stack overflow
violations, the launching of programs with excessive privileges, and many others.

4. Network - As network communications become ever more important and
pervasive in modern computing environments, it becomes ever more important to
protect this area of the system. (Both protecting the network itself from attack,
and protecting the local system from attacks coming in through the network.) This
is a growing area of concern as wireless communications and portable devices
become more and more prevalent.

Program Threats

 There are many common threats to modern systems. Only a few are discussed here.

Trojan Horse

 A Trojan Horse is a program that secretly performs some maliciousness in addition to its
visible actions.

 Some Trojan horses are deliberately written as such, and others are the result of
legitimate programs that have become infected with viruses, (see below.)

 One dangerous opening for Trojan horses is long search paths, and in particular paths
which include the current directory (“.”) as part of the path. If a dangerous program
having the same name as a legitimate program (or a common mis-spelling, such as "sl"
instead of "ls”) is placed anywhere on the path, then an unsuspecting user may be fooled
into running the wrong program by mistake.

 Another classic Trojan Horse is a login emulator, which records a users account name
and password, issues a "password incorrect" message, and then logs off the system. The
user then tries again (with a proper login prompt), logs in successfully, and doesn't realize
that their information has been stolen.

 Two solutions to Trojan Horses are to have the system print usage statistics on logouts,
and to require the typing of non-trappable key sequences such as Control-Alt-Delete in
order to log in. (This is why modern Windows systems require the Control-Alt-Delete

200

sequence to commence logging in, which cannot be emulated or caught by ordinary
programs. I.e. that key sequence always transfers control over to the operating system.)

 Spy ware is a version of a Trojan Horse that is often included in "free" software
downloaded off the Internet. Spy ware programs generate pop-up browser windows, and
may also accumulate information about the user and deliver it to some central site. (This
is an example of covert channels, in which surreptitious communications occur.) Another
common task of spyware is to send out spam e-mail messages, which then purportedly
come from the infected user.

Trap Door

 A Trap Door is when a designer or a programmer (or hacker) deliberately
inserts a security hole that they can use later to access the system.

 Because of the possibility of trap doors, once a system has been in an
untrustworthy state, that system can never be trusted again. Even the backup
tapes may contain a copy of some cleverly hidden back door.

 A clever trap door could be inserted into a compiler, so that any programs
compiled with that compiler would contain a security hole. This is especially
dangerous, because inspection of the code being compiled would not reveal any
problems.

Logic Bomb

 A Logic Bomb is code that is not designed to cause havoc all the time, but only
when a certain set of circumstances occurs, such as when a particular date or
time is reached or some other noticeable event.

 A classic example is the Dead-Man Switch, which is designed to check
whether a certain person (e.g. the author) is logging in every day, and if they
don't log in for a long time (presumably because they've been fired), then the
logic bomb goes off and either opens up security holes or causes other
problems.

Stack and Buffer Overflow

 This is a classic method of attack, which exploits bugs in system code that
allows buffers to overflow. Consider what happens in the following code, for
example, if argv[1] exceeds 256 characters:

o The strcpy command will overflow the buffer, overwriting
adjacent areas of memory.

o (The problem could be avoided using strncpy, with a limit of 255
characters copied plus room for the null byte.)

201

 #include
 #define BUFFER_SIZE 256

 int main(int argc, char * argv[])
 {
 char buffer[BUFFER_SIZE];

 if(argc < 2)
 return -1;
 else {
 strcpy(buffer, argv[1]);
 return 0;
 }
 }

Figure - C program with buffer-overflow condition.

 So how does overflowing the buffer cause a security breach? Well the first step is to
understand the structure of the stack in memory:

o The "bottom" of the stack is actually at a high memory address, and the
stack grows towards lower addresses.

o However the address of an array is the lowest address of the array, and
higher array elements extend to higher addresses. (I.e. an array "grows"
towards the bottom of the stack.

o In particular, writing past the top of an array, as occurs when a buffer
overflows with too much input data, can eventually overwrite the return
address, effectively changing where the program jumps to when it returns.

Figure- The layout for a typical stack frame.

 Now that we know how to change where the program returns to by overflowing the
buffer, the second step is to insert some nefarious code, and then get the program to jump
to our inserted code.

 Our only opportunity to enter code is via the input into the buffer, which means there isn't
room for very much. One of the simplest and most obvious approaches is to insert the
code for "exec (/bin/sh)". To do this requires compiling a program that contains this
instruction, and then using an assembler or debugging tool to extract the minimum extent
that includes the necessary instructions.

202

 The bad code is then padded with as many extra bytes as are needed to overflow the
buffer to the correct extent, and the address of the buffer inserted into the return address
location. (Note, however, that neither the bad code nor the padding can contain null
bytes, which would terminate the strcpy.)

 The resulting block of information is provided as "input", copied into the buffer by the
original program, and then the return statement causes control to jump to the location of
the buffer and start executing the code to launch a shell.

Figure - Hypothetical stack frame for Figure 15.2, (a) before and (b) after.

 Unfortunately famous hacks such as the buffer overflow attack are well published and
well known, and it doesn't take a lot of skill to follow the instructions and start attacking
lots of systems until the law of averages eventually works out. (Script Kiddies are those
hackers with only rudimentary skills of their own but the ability to copy the efforts of
others.)

 Fortunately modern hardware now includes a bit in the page tables to mark certain pages
as non-executable. In this case the buffer-overflow attack would work up to a point, but
as soon as it "returns" to an address in the data space and tries executing statements there,
an exception would be thrown crashing the program.

Viruses

 A virus is a fragment of code embedded in an otherwise legitimate program, designed to
replicate itself (by infecting other programs), and (eventually) wreaking havoc.

 Viruses are more likely to infect PCs than UNIX or other multi-user systems, because
programs in the latter systems have limited authority to modify other programs or to
access critical system structures (such as the boot block.)

 Viruses are delivered to systems in a virus dropper, usually some form of a Trojan Horse,
and usually via e-mail or unsafe downloads.

 Viruses take many forms (see below.) Figure 15.5 shows typical operation of a boot
sector virus:

203

Figure - A boot-sector computer virus.

 Some of the forms of viruses include:

o File - A file virus attaches itself to an executable file, causing it to run the
virus code first and then jump to the start of the original program. These
viruses are termed parasitic, because they do not leave any new files on
the system, and the original program is still fully functional.

o Boot - A boot virus occupies the boot sector, and runs before the OS is
loaded. These are also known as memory viruses, because in operation
they reside in memory, and do not appear in the file system.

o Macro - These viruses exist as a macro (script) that is run automatically
by certain macro-capable programs such as MS Word or Excel. These
viruses can exist in word processing documents or spreadsheet files.

o Source code viruses look for source code and infect it in order to spread.
o Polymorphic viruses change every time they spread - Not their underlying

functionality, but just their signature, by which virus checkers recognize
them.

o Encrypted viruses travel in encrypted form to escape detection. In
practice they are self-decrypting, which then allows them to infect other
files.

o Stealth viruses try to avoid detection by modifying parts of the system
that could be used to detect it. For example the read () system call could
be modified so that if an infected file is read the infected part gets skipped
and the reader would see the original unadulterated file.

204

o Tunneling viruses attempt to avoid detection by inserting themselves into
the interrupt handler chain, or into device drivers.

o Multipartite viruses attack multiple parts of the system, such as files,
boot sector, and memory.

o Armoured viruses are coded to make them hard for anti-virus researchers
to decode and understand. In addition many files associated with viruses
are hidden, protected, or given innocuous looking names such as "...".

 In 2004 a virus exploited three bugs in Microsoft products to infect hundreds of Windows
servers (including many trusted sites) running Microsoft Internet Information Server,
which in turn infected any Microsoft Internet Explorer web browser that visited any of
the infected server sites. One of the back-door programs it installed was a keystroke
logger, which records user’s keystrokes, including passwords and other sensitive
information.

 There is some debate in the computing community as to whether a monoculture, in
which nearly all systems run the same hardware, operating system, and applications,
increases the threat of viruses and the potential for harm caused by them.

System and Network Threats

 Most of the threats described above are termed program threats, because they attack
specific programs or are carried and distributed in programs. The threats in this section
attack the operating system or the network itself, or leverage those systems to launch
their attacks.

Worms

 A worm is a process that uses the fork / spawns process to make copies of itself in order
to wreak havoc on a system. Worms consume system resources, often blocking out other,
legitimate processes. Worms that propagate over networks can be especially problematic,
as they can tie up vast amounts of network resources and bring down large-scale systems.

 One of the most well-known worms was launched by Robert Morris, a graduate student
at Cornell, in November 1988. Targeting Sun and VAX computers running BSD UNIX
version 4, the worm spanned the Internet in a matter of a few hours, and consumed
enough resources to bring down many systems.

 This worm consisted of two parts:

3. A small program called a grappling hook, which was deposited on the
target system through one of three vulnerabilities, and

4. The main worm program, which was transferred onto the target system
and launched by the grappling hook program.

205

Figure - The Morris Internet worm.

 The three vulnerabilities exploited by the Morris Internet worm were as follows:

7. rsh (remote shell) is a utility that was in common use at that time for
accessing remote systems without having to provide a password. If a user
had an account on two different computers (with the same account name
on both systems), then the system could be configured to allow that user to
remotely connect from one system to the other without having to provide a
password. Many systems were configured so that any user (except root) on
system A could access the same account on system B without providing a
password.

8. finger is a utility that allows one to remotely query a user database, to find
the true name and other information for a given account name on a given
system. For example "finger joeUser@somemachine.edu" would access
the finger daemon at somemachine.edu and return information regarding
joeUser. Unfortunately the finger daemon (which ran with system
privileges) had the buffer overflow problem, so by sending a special 536-
character user name the worm was able to fork a shell on the remote
system running with root privileges.

9. send mail is a routine for sending and forwarding mail that also included a
debugging option for verifying and testing the system. The debug feature
was convenient for administrators, and was often left turned on. The
Morris worm exploited the debugger to mail and executes a copy of the
grappling hook program on the remote system.

 Once in place, the worm undertook systematic attacks to discover user passwords:

10. First it would check for accounts for which the account name and the
password were the same, such as "guest", "guest".

11. Then it would try an internal dictionary of 432 favorite password choices.
(I’m sure "password", "pass", and blank passwords were all on the list.)

12. Finally it would try every word in the standard UNIX on-line dictionary to
try and break into user accounts.

206

 Once it had gotten access to one or more user accounts, then it would attempt to use those
accounts to rsh to other systems, and continue the process.

 With each new access the worm would check for already running copies of itself, and 6
out of 7 times if it found one it would stop. (The seventh was to prevent the worm from
being stopped by fake copies.)

 Fortunately the same rapid network connectivity that allowed the worm to propagate so
quickly also quickly led to its demise - Within 24 hours remedies for stopping the worm
propagated through the Internet from administrator to administrator, and the worm was
quickly shut down.

 There is some debate about whether Mr. Morris's actions were a harmless prank or
research project that got out of hand or a deliberate and malicious attack on the Internet.
However the court system convicted him, and penalized him heavy fines and court costs.

 There have since been many other worm attacks, including the W32.Sobig.F@mm attack
which infected hundreds of thousands of computers and an estimated 1 in 17 e-mails in
August 2003. This worm made detection difficult by varying the subject line of the
infection-carrying mail message, including "Thank You!", "Your details", and "Re:
Approved".

Port Scanning

 Port Scanning is technically not an attack, but rather a search for vulnerabilities to
attack. The basic idea is to systematically attempt to connect to every known (or common
or possible) network port on some remote machine, and to attempt to make contact. Once
it is determined that a particular computer is listening to a particular port, then the next
step is to determine what daemon is listening, and whether or not it is a version
containing a known security flaw that can be exploited.

 Because port scanning is easily detected and traced, it is usually launched from zombie
systems, i.e. previously hacked systems that are being used without the knowledge or
permission of their rightful owner. For this reason it is important to protect "innocuous"
systems and accounts as well as those that contain sensitive information or special
privileges.

 There are also port scanners available that administrators can use to check their own
systems, which report any weaknesses found but which do not exploit the weaknesses or
cause any problems. Two such systems are nmap (http://www.insecure.org/nmap)
and nessus (http://www.nessus.org). The former identifies what OS is found, what
firewalls are in place, and what services are listening to what ports. The latter also
contains a database of known security holes, and identifies any that it finds.

Denial of Service

 Denial of Service (DOS) attacks do not attempt to actually access or damage systems,
but merely to clog them up so badly that they cannot be used for any useful work. Tight
loops that repeatedly request system services are an obvious form of this attack.

 DOS attacks can also involve social engineering, such as the Internet chain letters that
say "send this immediately to 10 of your friends, and then go to a certain URL", which
clogs up not only the Internet mail system but also the web server to which everyone is
directed. (Note: Sending a "reply all" to such a message notifying everyone that it was

207

just a hoax also clogs up the Internet mail service, just as effectively as if you had
forwarded the thing.)

 Security systems that lock accounts after a certain number of failed login attempts are
subject to DOS attacks which repeatedly attempt logins to all accounts with invalid
passwords strictly in order to lock up all accounts.

 Sometimes DOS is not the result of deliberate maliciousness. Consider for example:

o A web site that sees a huge volume of hits as a result of a successful
advertising campaign.

o CNN.com occasionally gets overwhelmed on big news days, such as Sept
11, 2001.

o CS students given their first programming assignment involving fork()
often quickly fill up process tables or otherwise completely consume
system resources. :-)

o (Please use ipcs and ipcrm when working on the inter-process
communications assignment !)

Cryptography as a Security Tool

 Within a given computer the transmittal of messages is safe, reliable and secure, because
the OS knows exactly where each one is coming from and where it is going.

 On a network, however, things aren't so straightforward - A rogue computer (or e-mail
sender) may spoof their identity, and outgoing packets are delivered to a lot of other
computers besides their (intended) final destination, which brings up two big questions
of security:

o Trust - How can the system be sure that the messages received are really from the
source that they say they are, and can that source be trusted?

o Confidentiality - How can one ensure that the messages one is sending are
received only by the intended recipient?

 Cryptography can help with both of these problems, through a system
of secrets and keys. In the former case, the key is held by the sender, so that the recipient
knows that only the authentic author could have sent the message; In the latter, the key is
held by the recipient, so that only the intended recipient can receive the message
accurately.

 Keys are designed so that they cannot be divined from any public information, and must

be guarded carefully. (Asymmetric encryption involves both a public and a private
key.)

Encryption

 The basic idea of encryption is to encode a message so that only the desired recipient can
decode and read it. Encryption has been around since before the days of Caesar, and is an
entire field of study in itself. Only some of the more significant computer encryption
schemes will be covered here.

 The basic process of encryption is shown in Figure 15.7, and will form the basis of most
of our discussion on encryption. The steps in the procedure and some of the key
terminology are as follows:

208

8. The sender first creates a message, m in plaintext.
9. The message is then entered into an encryption algorithm, E, along with

the encryption key, Ke.
10. The encryption algorithm generates the cipher text, c, = E(Ke)(m). For

any key k, E(k) is an algorithm for generating cipher text from a message,
and both E and E(k) should be efficiently computable functions.

11. The cipher text can then be sent over an unsecured network, where it may
be received by attackers.

12. The recipient enters the cipher text into a decryption algorithm, D, along
with the decryption key, Kd.

13. The decryption algorithm re-generates the plaintext message, m, =
D(Kd)(c). For any key k, D(k) is an algorithm for generating a clear text
message from a cipher text, and both D and D(k) should be efficiently
computable functions.

14. The algorithms described here must have this important property: Given a
cipher text c, a computer can only compute a message m such that c =
E(k)(m) if it possesses D(k). (In other words, the messages can't be
decoded unless you have the decryption algorithm and the decryption key.
)

Figure - A secure communication over an insecure medium.

Symmetric Encryption

 With symmetric encryption the same key is used for both encryption and decryption, and
must be safely guarded. There are a number of well-known symmetric encryption
algorithms that have been used for computer security:

209

o The Data-Encryption Standard, DES, developed by the National
Institute of Standards, NIST, has been a standard civilian
encryption standard for over 20 years. Messages are broken down
into 64-bit chunks, each of which is encrypted using a 56-bit key
through a series of substitutions and transformations. Some of the
transformations are hidden (black boxes), and are classified by
the U.S. government.

o DES is known as a block cipher, because it works on blocks of
data at a time. Unfortunately this is vulnerability if the same key is
used for an extended amount of data. Therefore an enhancement is
to not only encrypt each block, but also to XOR it with the
previous block, in a technique known as cipher-block chaining.

o As modern computers become faster and faster, the security of
DES has decreased, to where it is now considered insecure because
its keys can be exhaustively searched within a reasonable amount
of computer time. An enhancement called triple DES encrypts the
data three times using three separate keys (actually two
encryptions and one decryption) for an effective key length of 168
bits. Triple DES is in widespread use today.

o The Advanced Encryption Standard, AES, developed by NIST in
2001 to replace DES uses key lengths of 128, 192, or 256 bits, and
encrypts in blocks of 128 bits using 10 to 14 rounds of
transformations on a matrix formed from the block.

o The two fish algorithm, uses variable key lengths up to 256 bits
and works on 128 bit blocks.

o RC5 can vary in key length, block size, and the number of
transformations, and runs on a wide variety of CPUs using only
basic computations.

o RC4 is a stream cipher, meaning it acts on a stream of data rather
than blocks. The key is used to seed a pseudo-random number
generator, which generates a key stream of keys. RC4 is used
in WEP, but has been found to be breakable in a reasonable
amount of computer time.

Asymmetric Encryption

 With asymmetric encryption, the decryption key, Kd, is not the same as the encryption
key, Ke, and more importantly cannot be derived from it, which means the encryption
key can be made publicly available, and only the decryption key needs to be kept secret. (
or vice-versa, depending on the application.)

 One of the most widely used asymmetric encryption algorithms is RSA, named after its
developers - Rivest, Shamir, and Adleman.

 RSA is based on two large prime numbers, p and q, (on the order of 512 bits each), and
their product N.

o Ke and Kd must satisfy the relationship:
(Ke * Kd) % [(p - 1) * (q - 1)] = = 1

o The encryption algorithm is:
c = E(Ke)(m) = m^Ke % N

210

o The decryption algorithm is:
m = D(Kd)(c) = c^Kd % N

 An example using small numbers:
o p = 7
o q = 13
o N = 7 * 13 = 91
o (p - 1) * (q - 1) = 6 * 12 = 72
o Select Ke < 72 and relatively prime to 72, say 5
o Now select Kd, such that (Ke * Kd) % 72 = = 1, say 29
o The public key is now (5, 91) and the private key is (29, 91)
o Let the message, m = 42
o Encrypt: c = 42^5 % 91 = 35
o Decrypt: m = 35^29 % 91 = 42

Figure - Encryption and decryption using RSA asymmetric cryptography

 Note that asymmetric encryption is much more computationally expensive
than symmetric encryption, and as such it is not normally used for large
transmissions. Asymmetric encryption is suitable for small messages,
authentication, and key distribution, as covered in the following sections.

Authentication

 Authentication involves verifying the identity of the entity that transmitted a message.

211

 For example, if D(Kd)(c) produces a valid message, then we know the sender was in
possession of E(Ke).

 This form of authentication can also be used to verify that a message has not been
modified

 Authentication revolves around two functions, used for signatures (or signing),
and verification:

o A signing function, S(Ks) that produces an authenticator, A, from
any given message m.

o A Verification function, V(Kv,m,A) that produces a value of "true"
if A was created from m, and "false" otherwise.

o Obviously S and V must both be computationally efficient.
o More importantly, it must not be possible to generate a valid

authenticator, A, without having possession of S(Ks).
o Furthermore, it must not be possible to divine S(Ks) from the

combination of (m and A), since both are sent visibly across
networks.

 Understanding authenticators begins with an understanding of hash functions, which is
the first step:

o Hash functions, H(m) generate a small fixed-size block of data
known as a message digest, or hash value from any given input
data.

o For authentication purposes, the hash function must be collision
resistant on m. That is it should not be reasonably possible to find
an alternate message m' such that H(m') = H(m).

o Popular hash functions are MD5, which generates a 128-bit
message digest, and SHA-1, which generates a 160-bit digest.

 Message digests are useful for detecting (accidentally) changed messages, but are not
useful as authenticators, because if the hash function is known, then someone could
easily change the message and then generate a new hash value for the modified message.
Therefore authenticators take things one step further by encrypting the message digest.

 A message-authentication code, MAC, uses symmetric encryption and decryption of the
message digest, which means that anyone capable of verifying an incoming message
could also generate a new message.

 An asymmetric approach is the digital-signature algorithm, which produces
authenticators called digital signatures. In this case Ks and Kv are separate, Kv is the
public key, and it is not practical to determine S(Ks) from public information. In practice
the sender of a message signs it (produces a digital signature using S(Ks)), and the
receiver uses V(Kv) to verify that it did indeed come from a trusted source, and that it has
not been modified.

 There are three good reasons for having separate algorithms for encryption of messages
and authentication of messages:

o Authentication algorithms typically require fewer calculations,
making verification a faster operation than encryption.

o Authenticators are almost always smaller than the messages,
improving space efficiency. (?)

o Sometimes we want authentication only, and not confidentiality,
such as when a vendor issues a new software patch.

212

 Another use of authentication is non-repudiation, in which a person filling out an
electronic form cannot deny that they were the ones who did so.

Key Distribution

Key distribution with symmetric cryptography is a major problem, because all keys must be kept
secret, and they obviously can't be transmitted over unsecured channels. One option is to send
them out-of-band, say via paper or a confidential conversation.

 Another problem with symmetric keys, is that a separate key must be maintained and
used for each correspondent with whom one wishes to exchange confidential information.

 Asymmetric encryption solves some of these problems, because the public key can be
freely transmitted through any channel, and the private key doesn't need to be transmitted
anywhere. Recipients only need to maintain one private key for all incoming messages,
though senders must maintain a separate public key for each recipient to which they
might wish to send a message. Fortunately the public keys are not confidential, so
this key-ring can be easily stored and managed.

 Unfortunately there is still some security concerns regarding the public keys used in
asymmetric encryption. Consider for example the following man-in-the-middle attack
involving phony public keys:

Figure - A man-in-the-middle attack on asymmetric cryptography.

 One solution to the above problem involves digital certificates, which are public keys
that have been digitally signed by a trusted third party. But wait a minute - How do we
trust that third party, and how do we know they are really who they say they are?
Certain certificate authorities have their public keys included within web browsers and
other certificate consumers before they are distributed. These certificate authorities can

213

then vouch for other trusted entities and so on in a web of trust, as explained more fully
in section 15.4.3.

Implementation of Cryptography

 Network communications are implemented in multiple layers - Physical, Data Link,
Network, Transport, and Application being the most common breakdown.

 Encryption and security can be implemented at any layer in the stack, with pros and cons
to each choice:

o Because packets at lower levels contain the contents of higher layers, encryption
at lower layers automatically encrypts higher layer information at the same time.

o However security and authorization may be important to higher levels
independent of the underlying transport mechanism or route taken.

 At the network layer the most common standard is IPSec, a secure form of the IP layer,
which is used to set up Virtual Private Networks, VPNs.

 At the transport layer the most common implementation is SSL, described below.

An Example: SSL

 SSL (Secure Sockets Layer) 3.0 was first developed by Netscape, and has now evolved
into the industry-standard TLS protocol. It is used by web browsers to communicate
securely with web servers, making it perhaps the most widely used security protocol on
the Internet today.

 SSL is quite complex with many variations, only a simple case of which is shown here.
 The heart of SSL is session keys, which are used once for symmetric encryption and then

discarded, requiring the generation of new keys for each new session. The big challenge
is how to safely create such keys while avoiding man-in-the-middle and replay attacks.

 Prior to commencing the transaction, the server obtains a certificate from a certification
authority, CA, containing:

o Server attributes such as unique and common names.
o Identity of the public encryption algorithm, E(), for the server.
o The public key, k_e for the server.
o The validity interval within which the certificate is valid.
o A digital signature on the above issued by the CA:

 a = S(K_CA)((attrs, E(k_e), interval)
 In addition, the client will have obtained a public verification algorithm, V(K_CA), for

the certifying authority. Today's modern browsers include these built-in by the browser
vendor for a number of trusted certificate authorities.

 The procedure for establishing secure communications is as follows:
1. The client, c, connects to the server, s, and sends a random 28-byte number, n_c.
2. The server replies with its own random value, n_s, along with its certificate of

authority.
3. The client uses its verification algorithm to confirm the identity of the sender, and

if all checks out, then the client generates a 46 byte random premaster secret,
pms, and sends an encrypted version of it as cpms = E(k_s)(pms)

4. The server recovers pms as D(k_s)(cpms).

214

5. Now both the client and the server can compute a shared 48-byte master secret,
ms, = f(pms, n_s, n_c)

6. Next, both client and server generate the following from ms:
 Symmetric encryption keys k_sc_crypt and k_cs_crypt for

encrypting messages from the server to the client and vice-versa
respectively.

 MAC generation keys k_sc_mac and k_cs_mac for generating
authenticators on messages from server to client and client to
server respectively.

7. To send a message to the server, the client sends:
 c = E(k_cs_crypt)(m, S(k_cs_mac))(m)))

8. Upon receiving c, the server recovers:
 (m,a) = D(k_cs_crypt)(c)
 and accepts it if V(k_sc_mac)(m,a) is true.

 This approach enables both the server and client to verify the authenticity of every
incoming message, and to ensure that outgoing messages are only readable by the process
that originally participated in the key generation.

 SSL is the basis of many secure protocols, including Virtual Private Networks, VPNs, in
which private data is distributed over the insecure public internet structure in an
encrypted fashion that emulates a privately owned network.

User Authentication

 Protection, dealt with making sure that only certain users were allowed to perform certain
tasks, i.e. that a users privileges were dependent on his or her identity. But how does one
verify that identity to begin with?

Passwords

 Passwords are the most common form of user authentication. If the user is in
possession of the correct password, then they are considered to have identified
themselves.

 In theory separate passwords could be implemented for separate activities, such as
reading this file, writing that file, etc. In practice most systems use one password
to confirm user identity, and then authorization is based upon that identification.
This is a result of the classic trade-off between security and convenience.

Password Vulnerabilities

 Passwords can be guessed.

o Intelligent guessing requires knowing something about the intended target
in specific, or about people and commonly used passwords in general.

o Brute-force guessing involves trying every word in the dictionary, or
every valid combination of characters. For this reason good passwords
should not be in any dictionary (in any language), should be reasonably
lengthy, and should use the full range of allowable characters by including
upper and lower case characters, numbers, and special symbols.

215

 "Shoulder surfing" involves looking over people's shoulders while they are typing in their
password.

o Even if the lurker does not get the entire password, they may get enough
clues to narrow it down, especially if they watch on repeated occasions.

o Common courtesy dictates that you look away from the keyboard while
someone is typing their password.

o Passwords echoed as stars or dots still give clues, because an observer can
determine how many characters are in the password. :-(

 "Packet sniffing" involves putting a monitor on a network connection and reading data
contained in those packets.

o SSH encrypts all packets, reducing the effectiveness of packet sniffing.
o However you should still never e-mail a password, particularly not with

the word "password" in the same message or worse yet the subject header.
o Beware of any system that transmits passwords in clear text. ("Thank you

for signing up for XYZ. Your new account and password information are
shown below".) You probably want to have a spare throw-away password
to give these entities, instead of using the same high-security password
that you use for banking or other confidential uses.

 Long hard to remember passwords are often written down, particularly if they are used
seldom or must be changed frequently. Hence a security trade-off of passwords that are
easily divined versus those that get written down. :-(

 Passwords can be given away to friends or co-workers, destroying the integrity of the
entire user-identification system.

 Most systems have configurable parameters controlling password generation and what
constitutes acceptable passwords.

o They may be user chosen or machine generated.
o They may have minimum and/or maximum length requirements.
o They may need to be changed with a given frequency. (In extreme cases

for every session.)
o A variable length history can prevent repeating passwords.
o More or less stringent checks can be made against password dictionaries.

Encrypted Passwords

 Modern systems do not store passwords in clear-text form, and hence there is no
mechanism to look up an existing password.

 Rather they are encrypted and stored in that form. When a user enters their password, that
too is encrypted, and if the encrypted version matches, then user authentication passes.

 The encryption scheme was once considered safe enough that the encrypted versions
were stored in the publicly readable file "/etc/passwd".

o They always encrypted to a 13 character string, so an account could be
disabled by putting a string of any other length into the password field.

o Modern computers can try every possible password combination in a
reasonably short time, so now the encrypted passwords are stored in files
that are only readable by the super user. Any password-related programs
run as setuid root to get access to these files. (/etc/shadow)

o A random seed is included as part of the password generation process, and
stored as part of the encrypted password. This ensures that if two accounts

216

have the same plain-text password that they will not have the same
encrypted password. However cutting and pasting encrypted passwords
from one account to another will give them the same plain-text passwords.

One-Time Passwords

 One-time passwords resist shoulder surfing and other attacks where an observer is able to
capture a password typed in by a user.

o These are often based on a challenge and a response. Because the
challenge is different each time, the old response will not be valid for
future challenges.

 For example, The user may be in possession of a secret function f(
x). The system challenges with some given value for x, and the
user responds with f(x), which the system can then verify. Since
the challenger gives a different (random) x each time, the answer
is constantly changing.

 A variation uses a map (e.g. a road map) as the key. Today's
question might be "On what corner is SEO located?", and
tomorrow's question might be "How far is it from Navy Pier to
Wrigley Field?" Obviously "Taylor and Morgan" would not be
accepted as a valid answer for the second question!

o Another option is to have some sort of electronic card with a series of
constantly changing numbers, based on the current time. The user enters
the current number on the card, which will only be valid for a few
seconds. A two-factor authorization also requires a traditional password
in addition to the number on the card, so others may not use it if it were
ever lost or stolen.

o A third variation is a code book, or one-time pad. In this scheme a long
list of passwords is generated, and each one is crossed off and cancelled as
it is used. Obviously it is important to keep the pad secure.

Biometrics

 Biometrics involve a physical characteristic of the user that is not easily forged or
duplicated and not likely to be identical between multiple users.

o Fingerprint scanners are getting faster, more accurate, and more
economical.

o Palm readers can check thermal properties, finger length, etc.
o Retinal scanners examine the back of the users' eyes.
o Voiceprint analyzers distinguish particular voices.
o Difficulties may arise in the event of colds, injuries, or other physiological

changes.

Implementing Security Defenses

Security Policy

217

 A security policy should be well thought-out, agreed upon, and contained in a living
document that everyone adheres to and is updated as needed.

 Examples of contents include how often port scans are run, password requirements, virus
detectors, etc.

Vulnerability Assessment

 Periodically examine the system to detect vulnerabilities.

o Port scanning.
o Check for bad passwords.
o Look for suid programs.
o Unauthorized programs in system directories.
o Incorrect permission bits set.
o Program checksums / digital signatures which have changed.
o Unexpected or hidden network daemons.
o New entries in start-up scripts, shutdown scripts, cron tables, or other

system scripts or configuration files.
o New unauthorized accounts.

 The government considers a system to be only as secure as its most far-reaching
component. Any system connected to the Internet is inherently less secure than one that is
in a sealed room with no external communications.

 Some administrators advocate "security through obscurity", aiming to keep as much
information about their systems hidden as possible, and not announcing any security
concerns they come across. Others announce security concerns from the rooftops, under
the theory that the hackers are going to find out anyway, and the only one kept in the dark
by obscurity are honest administrators who need to get the word.

Intrusion Detection

 Intrusion detection attempts to detect attacks, both successful and unsuccessful attempts.
Different techniques vary along several axes:

o The time that detection occurs, either during the attack or after the fact.
o The types of information examined to detect the attack(s). Some attacks

can only be detected by analyzing multiple sources of information.
o The response to the attack, which may range from alerting an

administrator to automatically stopping the attack (e.g. killing an
offending process), to tracing back the attack in order to identify the
attacker.

 Another approach is to divert the attacker to a honey pot, on
a honey net. The idea behind a honey pot is a computer running
normal services, but which no one uses to do any real work. Such a
system should not see any network traffic under normal conditions,
so any traffic going to or from such a system is by definition
suspicious. Honey pots are normally kept on a honey net protected
by a reverse firewall, which will let potential attackers in to the
honey pot, but will not allow any outgoing traffic. (So that if the

218

honey pot is compromised, the attacker cannot use it as a base of
operations for attacking other systems.) Honey pots are closely
watched, and any suspicious activity carefully logged and
investigated.

 Intrusion Detection Systems, IDSs, raise the alarm when they detect an intrusion.
Intrusion Detection and Prevention Systems, IDPs, act as filtering routers, shutting down
suspicious traffic when it is detected.

 There are two major approaches to detecting problems:
o Signature-Based Detection scans network packets, system files, etc.

looking for recognizable characteristics of known attacks, such as text
strings for messages or the binary code for "exec /bin/sh". The problem
with this is that it can only detect previously encountered problems for
which the signature is known, requiring the frequent update of signature
lists.

o Anomaly Detection looks for "unusual" patterns of traffic or operation,
such as unusually heavy load or an unusual number of logins late at night.

 The benefit of this approach is that it can detect previously
unknown attacks, so called zero-day attacks.

 One problem with this method is characterizing what is "normal"
for a given system. One approach is to benchmark the system, but
if the attacker is already present when the benchmarks are made,
then the "unusual" activity is recorded as "the norm."

 Another problem is that not all changes in system performance are
the result of security attacks. If the system is bogged down and
really slow late on a Thursday night, does that mean that a hacker
has gotten in and is using the system to send out SPAM, or does it
simply mean that a CS 385 assignment is due on Friday? :-)

 To be effective, anomaly detectors must have a very low false
alarm (false positive) rate, lest the warnings get ignored, as well
as a low false negative rate in which attacks are missed.

Virus Protection

 Modern anti-virus programs are basically signature-based detection systems, which also
have the ability (in some cases) of disinfecting the affected files and returning them
back to their original condition.

 Both viruses and anti-virus programs are rapidly evolving. For example viruses now
commonly mutate every time they propagate, and so anti-virus programs look for
families of related signatures rather than specific ones.

 Some antivirus programs look for anomalies, such as an executable program being
opened for writing (other than by a compiler.)

 Avoiding bootleg, free, and shared software can help reduce the chance of catching a
virus, but even shrink-wrapped official software has on occasion been infected by
disgruntled factory workers.

 Some virus detectors will run suspicious programs in a sandbox, an isolated and secure
area of the system which mimics the real system.

 Rich Text Format, RTF, files cannot carry macros, and hence cannot carry Word macro
viruses.

219

 Known safe programs (e.g. right after a fresh install or after a thorough examination)
can be digitally signed, and periodically the files can be re-verified against the stored
digital signatures. (Which should be kept secure, such as on off-line write-only
medium?)

Auditing, Accounting, and Logging

 Auditing, accounting, and logging records can also be used to detect anomalous behavior.
 Some of the kinds of things that can be logged include authentication failures and

successes, logins, running of suid or sgid programs, network accesses, system calls, etc.
In extreme cases almost every keystroke and electron that moves can be logged for future
analysis. (Note that on the flip side, all this detailed logging can also be used to analyze
system performance. The down side is that the logging also affects system performance (
negatively!), and so a Heisenberg effect applies.)

 "The Cuckoo's Egg" tells the story of how Cliff Stoll detected one of the early UNIX
break ins when he noticed anomalies in the accounting records on a computer system
being used by physics researchers.

Tripwire File system (New Sidebar)

 The tripwire file system monitors files and directories for changes, on the assumption that
most intrusions eventually result in some sort of undesired or unexpected file changes.

 The two config file indicates what directories are to be monitored, as well as what
properties of each file are to be recorded. (E.g. one may choose to monitor permission
and content changes, but not worry about read access times.)

 When first run, the selected properties for all monitored files are recorded in a database.
Hash codes are used to monitor file contents for changes.

 Subsequent runs report any changes to the recorded data, including hash code changes,
and any newly created or missing files in the monitored directories.

 For full security it is necessary to also protect the tripwire system itself, most importantly
the database of recorded file properties. This could be saved on some external or write-
only location, but that makes it harder to change the database when legitimate changes
are made.

 It is difficult to monitor files that are supposed to change, such as log files. The best
tripwire can do in this case is to watch for anomalies, such as a log file that shrinks in
size.

 Free and commercial versions are available at http://tripwire.org and http://tripwire.com.

Fire walling to Protect Systems and Networks

 Firewalls are devices (or sometimes software) that sits on the border between two
securities domains and monitor/log activity between them, sometimes restricting the
traffic that can pass between them based on certain criteria.

 For example a firewall router may allow HTTP: requests to pass through to a web server
inside a company domain while not allowing telnet, ssh, or other traffic to pass through.

 A common architecture is to establish a de-militarized zone, DMZ, which sort of sits
"between" the company domain and the outside world, as shown below. Company
computers can reach either the DMZ or the outside world, but outside computers can only

220

reach the DMZ. Perhaps most importantly, the DMZ cannot reach any of the other
company computers, so even if the DMZ is breached, the attacker cannot get to the rest of
the company network. (In some cases the DMZ may have limited access to company
computers, such as a web server on the DMZ that needs to query a database on one of the
other company computers.)

Figure 15.10 - Domain separation via firewall.

 Firewalls themselves need to be resistant to attacks, and unfortunately have several
vulnerabilities:

o Tunneling, which involves encapsulating forbidden traffic inside of packets that
are allowed?

o Denial of service attacks addressed at the firewall itself.
o Spoofing, in which an unauthorized host sends packets to the firewall with the

return address of an authorized host.
 In addition to the common firewalls protecting a company internal network from the

outside world, there are also some specialized forms of firewalls that have been recently
developed:

o A personal firewall is a software layer that protects an individual computer. It
may be a part of the operating system or a separate software package.

o An application proxy firewall understands the protocols of a particular service
and acts as a stand-in (and relay) for the particular service. For example, and
SMTP proxy firewall would accept SMTP requests from the outside world,
examine them for security concerns, and forward only the "safe" ones on to the
real SMTP server behind the firewall.

o XML firewalls examine XML packets only, and reject ill-formed packets. Similar
firewalls exist for other specific protocols.

o System call firewalls guard the boundary between user mode and system mode,
and reject any system calls that violate security policies.

Computer-Security Classifications

221

 No computer system can be 100% secure, and attempts to make it so can quickly make it
unusable.

 However one can establish a level of trust to which one feels "safe" using a given
computer system for particular security needs.

 The U.S. Department of Defense’s "Trusted Computer System Evaluation Criteria"
defines four broad levels of trust, and sub-levels in some cases:

o Level D is the least trustworthy, and encompasses all systems that do not meet
any of the more stringent criteria. DOS and Windows 3.1 fall into level D, which
has no user identification or authorization, and anyone who sits down has full
access and control over the machine.

o Level C1 includes user identification and authorization, and some means of
controlling what users are allowed to access what files. It is designed for use by a
group of mostly cooperating users, and describes most common UNIX systems.

o Level C2 adds individual-level control and monitoring. For example file access
control can be allowed or denied on a per-individual basis, and the system
administrator can monitor and log the activities of specific individuals. Another
restriction is that when one user uses a system resource and then returns it back to
the system, another user who uses the same resource later cannot read any of the
information that the first user stored there. (I.e. buffers, etc. are wiped out
between users, and are not left full of old contents.) Some special secure versions
of UNIX have been certified for C2 security levels, such as SCO.

o Level B adds sensitivity labels on each object in the system, such as "secret", "top
secret", and "confidential". Individual users have different clearance levels, which
controls which objects they are able to access. All human-readable documents are
labeled at both the top and bottom with the sensitivity level of the file.

o Level B2 extends sensitivity labels to all system resources, including devices. B2
also supports covert channels and the auditing of events that could exploit covert
channels.

o B3 allows creation of access-control lists that denote users NOT given access to
specific objects.

o Class A is the highest level of security. Architecturally it is the same as B3, but it
is developed using formal methods which can be used to prove that the system
meets all requirements and cannot have any possible bugs or other vulnerabilities.
Systems in class A and higher may be developed by trusted personnel in secure
facilities.

o These classifications determine what a system can implement, but it is up to
security policy to determine how they are implemented in practice. These systems
and policies can be reviewed and certified by trusted organizations, such as the
National Computer Security Centre. Other standards may dictate physical
protections and other issues.

An Example: Windows XP

 Windows XP is a general purpose OS designed to support a wide variety of security
features and methods. It is based on user accounts which can be grouped in any manner.

 When a user logs on, a security access token is issued that includes the security ID for
the user, security IDs for any groups of which the user is a member, and a list of any

222

special privileges the user has, such as performing backups, shutting down the system,
and changing the system clock.

 Every process running on behalf of a user gets a copy of the user’s security token, which
determines the privileges of that process running on behalf of that user.

 Authentication is normally done via passwords, but the modular design of XP allows for
alternative authentication such as retinal scans or fingerprint readers.

 Windows XP includes built-in auditing that allows many common security threats to be
monitored, such as successful and unsuccessful logins, logouts, attempts to write to
executable files, and access to certain sensitive files.

 Security attributes of objects are described by security descriptors, which include the ID
of the owner, group ownership for POSIX subsystems only, a discretionary access-
control list describing exactly what permissions each user or group on the system has for
this particular object, and auditing control information.

 The access control lists include for each specified user or group either Access Allowed or
Access Denied for the following types of actions: Read Data, Write Data, Append Data,
Execute, Read Attributes, Write Attributes, ReadExtendedAttribute, and
WriteExtendedAttribute.

 Container objects such as directories can logically contain other objects. When a new
object is created in a container or copied into a container, by default it inherits the
permissions of the new container. No container objects inherit any other permission. If
the permissions of the container are changed later, that does not affect the permissions of
the contained objects.

 Although Windows XP is capable of supporting a secure system, many of the security
features are not enabled by default, resulting in a fair number of security breaches on XP
systems. There are also a large number of system daemons and other programs that start
automatically at start-up, whether the system administrator has thought about them or not.
(My system currently has 54 processes running, most of which I did not deliberately start
and which have short cryptic names which makes it hard to divine exactly what they do
or why. Faced with this situation, most users and administrators will simply leave alone
anything they don't understand.)

	Microsoft Word - First Page
	MR 18.pdf
	618a43c5b3420eec66c1abcb4008d0c7cb75735c3fa3c76be037c4e6b6e1419e.pdf

